matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegralberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Integralberechnung
Integralberechnung < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:26 Di 30.06.2009
Autor: Sebescen

Aufgabe
Man berechne für alle -1<a<b<1 das Integral [mm] \integral_{a}^{b}{g}. [/mm] Mit g(x)=x / [mm] \wurzel{1-x²}*(\wurzel{1-\wurzel{1-x²}}) [/mm]

Ich soll mir aus dem Nenner ein geeignetes f(x) suchen und dieses ableiten, so dass f'(x) den Zähler von g(x) ergibt.
So dass ich dann g(x) in [mm] \integral_{a}^{b}{(f(x))^q*f'(x)dx} [/mm] umwandeln kann.
Daraus kann ich dann die Stammfunktion bilden und das Integral berechnen.

Ein zweites Integral, dass nach dem gleichen Schema berechnet werden soll lautet:
[mm] \integral_{a}^{b}{g²} [/mm] mit g(x)=x / [mm] \wurzel[3]{1+x³} [/mm]

Tue mir gerade mit dem Wurzel auf- und ableiten schwer. Finde irgendwie nicht das geeignete f(x) in beiden Funktionen!?

        
Bezug
Integralberechnung: Substitution
Status: (Antwort) fertig Status 
Datum: 22:29 Di 30.06.2009
Autor: Loddar

Hallo Sebescen!


Führe die Substitution $u \ := \ [mm] \wurzel{1-x^2}$ [/mm] durch.


Gruß
Loddar


Bezug
                
Bezug
Integralberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:47 Di 30.06.2009
Autor: Sebescen

Danke für die schnelle Antwort!
Aber ich komme da leider irgendwie immer noch nicht weiter!? Wenn ich [mm] \wurzel{1-x²} [/mm] ableite (Kettenregel), komme ich auf 1/2 * -2x / [mm] \wurzel{1-x²}... [/mm] ?? Oder liege ich da falsch?

Bezug
                        
Bezug
Integralberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:53 Di 30.06.2009
Autor: MathePower

Hallo Sebescen,

> Danke für die schnelle Antwort!
>  Aber ich komme da leider irgendwie immer noch nicht
> weiter!? Wenn ich [mm]\wurzel{1-x²}[/mm] ableite (Kettenregel),
> komme ich auf 1/2 * -2x / [mm]\wurzel{1-x²}...[/mm] ?? Oder liege
> ich da falsch?


Da liegst Du goldrichtig.


Gruß
MathePower

Bezug
                                
Bezug
Integralberechnung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:41 Mi 01.07.2009
Autor: Sebescen

Kann ich denn daran nochwas vereinfachen?? Weil sonst komme ich nicht auf die Form [mm] \integral_{a}^{b}{f(x)^q f'(x)dx} [/mm]

Bezug
                                        
Bezug
Integralberechnung: vorrechnen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:06 Mi 01.07.2009
Autor: Loddar

Hallo Sebescen!


Wie weit kommst Du denn? Was erhältst Du denn, wenn Du die o.g. Substitution anwendest und einsetzt?


Gruß
Loddar


Bezug
                                                
Bezug
Integralberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:32 Mi 01.07.2009
Autor: Sebescen

Ich muss doch den Nenner auf so etwas wie f'(x)=x bringen, damit ich meinen Satz anwenden kann oder? Und da komme ich mit der Substitution nicht hin. Hab da vielleicht gerade nen Brett vorm Kopf oder sehe den einfachen Weg nicht...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]