matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegralberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Integralberechnung
Integralberechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralberechnung: e-funktion...
Status: (Frage) beantwortet Status 
Datum: 20:06 Mi 06.05.2009
Autor: lady16

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
hallo...ich verzweifle gerade...ich versuche die stammfunktion von [mm] exp[-x^2] [/mm] zu berechnen...wie peinlich...

        
Bezug
Integralberechnung: keine explizite Stamfunktion
Status: (Antwort) fertig Status 
Datum: 20:21 Mi 06.05.2009
Autor: Loddar

Hallolady,

[willkommenmr] !!


Das muss Dir nicht peinlich sein. Wenn die zu integrierende Funktion wirklich [mm] $e^{-x^2}$ [/mm] lautet, gibt es hierzu keine explizite Stammfunktion.


Wie lautet denn die gesamte Aufgabe?


Gruß
Loddar


Bezug
                
Bezug
Integralberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:26 Mi 06.05.2009
Autor: lady16

also, danke für die schnelle antwort! die ganze aufgabe zu stellen wäre jetzt zu viel...aber:
[mm] f(x)=(\integral_{0}^{t}{exp[-x^2] dx})^2 [/mm]
und jetzt muss ich f´(x) bilden...

Bezug
                
Bezug
Integralberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:33 Mi 06.05.2009
Autor: lady16

also, danke für die schnelle antwort! die ganze aufgabe zu stellen wäre jetzt zu viel...aber:
[mm] f(x)=(\integral_{0}^{t}{exp[-x^2] dx})^2 [/mm]
und jetzt muss ich f´(x) bilden...
lieben gruß, johanna

Bezug
                        
Bezug
Integralberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:10 Mi 06.05.2009
Autor: glie


> also, danke für die schnelle antwort! die ganze aufgabe zu
> stellen wäre jetzt zu viel...aber:
>  [mm]f(x)=(\integral_{0}^{t}{exp[-x^2] dx})^2[/mm]
>  und jetzt muss
> ich f´(x) bilden...
>  lieben gruß, johanna


Hallo,

also vielleicht ist das jetzt total blöd von mir, aber mal angenommen F(x) ist die Stammfunktion von [mm] e^{-x^2} [/mm]

Dann ist [mm] f(x)=([F(x)]_0^t)^2=(F(t)-F(0))^2 [/mm]
Dieser Ausdruck enthält aber doch gar kein x mehr, also ist f'(x)=0

Gruß Glie

Bezug
                                
Bezug
Integralberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:13 Mi 06.05.2009
Autor: lady16

üps...das war ein blöder fehler von mir, sollte f´(t) heißen...


Bezug
                        
Bezug
Integralberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:26 Mi 06.05.2009
Autor: leduart

Hallo
du suchst f(t) und dein Integral willst du nicht loesen, sondern ableiten.
Was ergibt die Ableitung eines Integrals nach der oberen Grenze
Nenn das Integral mal F(t)-F(0) wobei F die unbekannte Stammfkt ist. was ist dann ( F(t)-F(0))'
was (( [mm] F(t)-F(0))^2)' [/mm]
Gruss leduart

Bezug
                                
Bezug
Integralberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:50 Mi 06.05.2009
Autor: lady16

das ist mir schon klar, muss es nur weiter auflösen...
naja, was solls, schreibe ich die ganze aufgabe:
[mm] f,g:[0,\infty]\to\IR, [/mm]
[mm] f(t)=(\integral_{0}^{t}{exp(-x^2) dx})^2 [/mm]
[mm] g(t)=\integral_{0}^{1}{(exp(-t^2(x^2+1))/(x^2+1)) dx} [/mm]
zeige nun: f´(t)+g´(t)=0

ich hänge irgendwie...

Bezug
                                        
Bezug
Integralberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:23 Do 07.05.2009
Autor: rainerS

Hallo Johanna!

> das ist mir schon klar, muss es nur weiter auflösen...
>  naja, was solls, schreibe ich die ganze aufgabe:
>  [mm]f,g:[0,\infty]\to\IR,[/mm]
>  [mm]f(t)=\left(\integral_{0}^{t}{\exp(-x^2) dx}\right)^2[/mm]
>  
> [mm]g(t)=\integral_{0}^{1}{(\exp(-t^2(x^2+1))/(x^2+1)) dx}[/mm]
>  
> zeige nun: f´(t)+g´(t)=0
>  
> ich hänge irgendwie...

Du musst also die beiden Ableitungen ausrechnen. Die erste ist ganz einfach. Wenn ich das Integral mit F(t) bezeichne:

[mm] F(t) = \integral_{0}^{t}{\exp(-x^2) dx} [/mm],

dann ist ja, weil F die Stammfunktion von [mm] $\exp(-x^2) [/mm] $ ist: $F'(t) = [mm] \exp(-t^2) [/mm] $. Und außerdem ist

[mm] f(t) = (F(t))^2 [/mm].

Jetzt musst du für $F'(t)$ nur die Kettenregel anwenden und danach ein bischen geschickt substituieren, damit du ein Integral mit Grenzen 0 und 1 da stehen hast.

g(t) ist ein parameterabhängiges Integral einer stetig diff'baren Funktion zweier Variablen:

[mm] g(t) = \integral_a^b h(t,x) dx [/mm].

Da gilt:

[mm] g'(t) = \integral_a^b \bruch{\partial h(t,x)}{\partial t} dx [/mm].

  Viele Grüße
    Rainer

  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]