matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisIntegralberechnen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Integralberechnen
Integralberechnen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralberechnen: Frage
Status: (Frage) beantwortet Status 
Datum: 16:42 Fr 22.10.2004
Autor: K-D

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
[Hier gibst du bitte die direkten Links zu diesen Fragen an.]
oder
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt. Hallo,

wie löst man das Integral von
[mm] \integral_{0}^{2\pi} {Cos(x)^{2} e^{cos(x)} dx} [/mm]

Danke sehr,

K-D

        
Bezug
Integralberechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:57 Fr 22.10.2004
Autor: rahu

das cos(x)² ist das als (cos (x))² oder als cos (x²) gemeint???

und: warum nimmst nicht einfach nen taschenrechner??

Bezug
        
Bezug
Integralberechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:11 Fr 22.10.2004
Autor: Bambi

Das Integral ist meiner Meinung nach Null, ich bin mir aber nicht sicher.

Ich habe als erstes cos(x) durch m substituiert.

[mm] \bruch{-1}{sin(x)}\integral_{cos(0)}^{cos(2\pi)} {m^{2} e^{m} dm} [/mm]

Und da [mm] cos(2\pi) [/mm] = [mm] cos(\pi) [/mm] ist, müsste das Integral meiner Meinung nach Null sein

Es kann aber auch sein, dass ich mich damit irre. Vielleicht hilft dir die Antwort ja.

Bezug
                
Bezug
Integralberechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:32 Fr 22.10.2004
Autor: Micha

Hallo!
> Das Integral ist meiner Meinung nach Null, ich bin mir aber
> nicht sicher.
>  
> Ich habe als erstes cos(x) durch m substituiert.
>  
> [mm]\bruch{-1}{sin(x)}\integral_{cos(0)}^{cos(2\pi)} {m^{2} e^{m} dm} [/mm]

Die Substitution hört sich ja sehr vielversprechend an, leider darfst du [mm] $\sin [/mm] x $ nicht ohne Weiteres aus dem Integral herausziehen, da es sich nicht um eine Konstante handelt.

>  
>
> Und da [mm]cos(2\pi)[/mm] = [mm]cos(\pi)[/mm] ist, müsste das Integral meiner
> Meinung nach Null sein

Hier liegst du leider falsch. Schaue mal die Skizze meines Matheprogrammes:
[Dateianhang nicht öffentlich]


Das Programm gibt mit eine Lösung von rund 3,87 aus. Leider gibt es da keinen Rechenweg zu, den du ja sicher brauchst.
Mehr weiß ich leider auch nicht. =(

Gruß Micha

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
        
Bezug
Integralberechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:29 Fr 22.10.2004
Autor: K-D

Entschuldigung, ich habe mich bei dem Integral vertippt.
Das wäre auch etwas leichter.

Das richtige ist:

[mm] \cos(nx) [/mm] cos(x) [mm] e^{cos(x)} [/mm]

Bezug
                
Bezug
Integralberechnen: rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:35 Fr 22.10.2004
Autor: andreas

was willst du nun berechnen?

[m] \integral_{0}^{2\pi} {\cos(nx) \cos(x) e^{\cos(x)} \, \text{d}x} [/m] ?

Bezug
                        
Bezug
Integralberechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:02 Sa 23.10.2004
Autor: K-D

Genau, ich habe jetzt aber die Lösung, dank Mathematika :)

Die Aufgabe sollte damit bearbeitet werden.

Danke trotzdem.

Falls Interesse besteht:

für n gerade ist es immer 0 für n <> gerade

n = 1:
0.434856
n=3
-0.0825458
n=5
0.020862

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]