matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegralaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Integralaufgabe
Integralaufgabe < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:11 Di 23.04.2013
Autor: Mopsi

Aufgabe
[mm] \int_{0}^{a} \int_{a}^{2a} \frac{C}{x} dxdy[/mm]




Guten Abend :)

Zunächst einmal rechne ich das "innere" Integral aus:

[mm] \int_{a}^{2a} \frac{C}{x} dx = \int_{a}^{2a} C*log(x) = C*log(2)[/mm]

Nun das Ergebnis in das äußere Integral einsetzen:

[mm] \int_{0}^{a} C*log(2) dy= \int_{0}^{a}C*log(2)*y = C*log(2)*a [/mm]

Wolfram Alpha bekommt aber nur log(2) als Ergebnis, also kein C und kein a.
Was habe ich falsch gemacht?

Mopsi

        
Bezug
Integralaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:20 Di 23.04.2013
Autor: schachuzipus

Hallo Mopsi,


> [mm]\int_{0}^{a} \int_{a}^{2a} \frac{C}{x} dxdy[/mm]

>
>
>

> Guten Abend :)

>

> Zunächst einmal rechne ich das "innere" Integral aus:

>

> [mm]\int_{a}^{2a} \frac{C}{x} dx = \int_{a}^{2a} C*log(x) = C*log(2)[/mm] [ok]

>

> Nun das Ergebnis in das äußere Integral einsetzen:

>

> [mm] \int_{0}^{a} C*log(2) dy= \int_{0}^{a}C*log(2)*y = C*log(2)*a [/mm] [ok]

Hier ist bei mittleren Term das Integralzeichen zuviel, du hast ja schon ausintegriert ...

>

> Wolfram Alpha bekommt aber nur log(2) als Ergebnis, also
> kein C und kein a.
> Was habe ich falsch gemacht?

Möglicherweise falsch eingegeben?

>

> Mopsi

Gruß

schachuzipus

Bezug
                
Bezug
Integralaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:23 Di 23.04.2013
Autor: Mopsi

Hallo Schachu :)


> > Nun das Ergebnis in das äußere Integral einsetzen:
> >
> > [mm] \int_{0}^{a} C*log(2) dy= \int_{0}^{a}C*log(2)*y = C*log(2)*a [/mm]
> [ok]

>

> Hier ist bei mittleren Term das Integralzeichen zuviel, du
> hast ja schon ausintegriert ...

Ich wollte es eigentlich mit den eckigen Klammern machen, aber die habe ich im Formeleditor nicht gefunden..

Aber wenn ich das Integralzeichen mit den Grenzen weglasse, dann habe ich doch die Grenzen unterschlagen, dann darf ich doch gar nicht das Gleichheitszeichen setzen, oder?

> > Wolfram Alpha bekommt aber nur log(2) als Ergebnis,
> also
> > kein C und kein a.
> > Was habe ich falsch gemacht?

>

> Möglicherweise falsch eingegeben?

Hmm schau mal:
http://www.wolframalpha.com/input/?i=integral+from+0+to+a+of+integral+from+a+to+2a+of+C%2Fx+dxdy

Mopsi

Bezug
                        
Bezug
Integralaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:32 Di 23.04.2013
Autor: schachuzipus

Hallo nochmal,


> Hallo Schachu :)

>
>

> > > Nun das Ergebnis in das äußere Integral einsetzen:
> > >
> > > [mm] \int_{0}^{a} C*log(2) dy= \int_{0}^{a}C*log(2)*y = C*log(2)*a [/mm]

>

> > [ok]
> >
> > Hier ist bei mittleren Term das Integralzeichen zuviel,
> du
> > hast ja schon ausintegriert ...

>

> Ich wollte es eigentlich mit den eckigen Klammern machen,
> aber die habe ich im Formeleditor nicht gefunden..

AltGr+8,9

\left[...\right] für große eckige Klammern

Also [mm] $\left[C\cdot{}\ln(2)\right]_0^{a}$ [/mm] <--- klick

>

> Aber wenn ich das Integralzeichen mit den Grenzen weglasse,
> dann habe ich doch die Grenzen unterschlagen, dann darf ich
> doch gar nicht das Gleichheitszeichen setzen, oder?

>

> > > Wolfram Alpha bekommt aber nur log(2) als Ergebnis,
> > also
> > > kein C und kein a.
> > > Was habe ich falsch gemacht?

Ich kann keinen Fehler finden, selbst wenn du genauer das erste Integral mit [mm] $\ln(|x|)$ [/mm] nimmst, kürzt sich da $|a|$ raus und [mm] $\ln(2)$ [/mm] bleibt ...

> >
> > Möglicherweise falsch eingegeben?

>

> Hmm schau mal:

>

> http://www.wolframalpha.com/input/?i=integral+from+0+to+a+of+integral+from+a+to+2a+of+C%2Fx+dxdy
> ​

Hmmm. K.A., was der da macht ... vllt. ist der Wolfram schon im Champion's League-Fieber ?

> Mopsi

Gruß

schachuzipus

Bezug
                        
Bezug
Integralaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:39 Di 23.04.2013
Autor: schachuzipus

Hallo nochmal,

bei Wolfram Alpha Examples:

http://www.wolframalpha.com/input/?i=integrate+C%2Fx++dx+dy%2C+x%3Da..2a%2C+y%3D0..a

Stimmt mit deiner händischen Lösung überein ...

Gruß

schachuzipus

Bezug
                                
Bezug
Integralaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:45 Di 23.04.2013
Autor: Mopsi

Alles klar, vielen Dank! ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]