matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegral x^x^x^3
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Integral x^x^x^3
Integral x^x^x^3 < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral x^x^x^3: Idee?
Status: (Frage) überfällig Status 
Datum: 22:43 Mo 17.01.2011
Autor: adamo

Aufgabe
finden sie die stammfunkt von  [mm] f(x)=x^{x^{x}^{3}} [/mm]

[mm] \integral {x^{x^{x}^{3}} dx} [/mm]

So wie oben geschrieben. hat jmd n idee wie man sowas berechnet??? weil bei mir kommen nur komische ausdrücke raus.

        
Bezug
Integral x^x^x^3: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:22 Mo 17.01.2011
Autor: reverend

Hallo adamo,

dass ich da auch keine Lösung sehe, ist noch nicht tragisch. Es gibt sicher viele Leute, die besser integrieren können als ich.

Dass aber der []Wolfram Integrator auch keine Lösung findet, stimmt mich bedenklich. Manchmal hat er Schwierigkeiten mit der Identifikation einer Eingabe, aber das scheint hier nicht der Fall zu sein.

Mal sehen, ob jemand anders eine Idee hat. Ich dachte nur, es wäre unfair, Dich mit Deiner Irritation allein zu lassen... ;-)

Grüße
reverend


Bezug
        
Bezug
Integral x^x^x^3: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 00:49 Di 18.01.2011
Autor: qsxqsx

Eine Idee hab ich:

Nehmen wir einfachheitshalber [mm] \integral_{}^{}{x^{x} dx}. [/mm]

Das Integral [mm] x^{c} [/mm] wobei c eine Konstante ist kennen wir.
Es ist  [mm] \integral_{}^{}{x^{c} dx} [/mm] =  [mm] \bruch{x^{c+1}}{c+1} [/mm] für alle c [mm] \not= [/mm] -1

Jetzt können wir  z.B. [mm] \integral_{3}^{5}{x^{x} dx} [/mm] approximieren indem wir schreiben [mm] \integral_{3}^{5}{x^{x} dx} [/mm] =  [mm] \integral_{3}^{4}{x^{3} dx} [/mm] +  [mm] \integral_{4}^{5}{x^{4} dx} [/mm]

Da könnte man einen Grenzübergang machen...?

Und dann noch für [mm] x^{x^{x}} [/mm] verallgemeinern...

Gruss

Bezug
                
Bezug
Integral x^x^x^3: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:55 Di 18.01.2011
Autor: qsxqsx

Das wäre dann sowas:

[mm] \limes_{\Delta \rightarrow 0} \integral_{a}^{b}{}\integral_{x_{0}}^{x_{0} + \Delta}{x^{x_{0}}dx dx_{0}} [/mm]

Wäre auch daran interessiert falls mir jemand das bestätigen könnte.

Gruss

Bezug
                        
Bezug
Integral x^x^x^3: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:19 Di 18.01.2011
Autor: qsxqsx

Ja war ja nur ein Vorschlag bzw. Idee..............man muss die Idee hald noch weiterführen.......

Gruss

Bezug
                
Bezug
Integral x^x^x^3: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 04:20 Di 18.01.2011
Autor: angela.h.b.


> Eine Idee hab ich:
>  
> Nehmen wir einfachheitshalber [mm]\integral_{}^{}{x^{x} dx}.[/mm]
>
> Das Integral [mm]x^{c}[/mm] wobei c eine Konstante ist kennen wir.
>  Es ist  [mm]\integral_{}^{}{x^{c} dx}[/mm] =  [mm]\bruch{x^{c+1}}{c+1}[/mm]
> für alle c [mm]\not=[/mm] -1
>  
> Jetzt können wir  z.B. [mm]\integral_{3}^{5}{x^{x} dx}[/mm]
> approximieren indem wir schreiben [mm]\integral_{3}^{5}{x^{x} dx}[/mm]
> =  [mm]\integral_{3}^{4}{x^{3} dx}[/mm] +  [mm]\integral_{4}^{5}{x^{4} dx}[/mm]

Hallo,

wie kommst Du denn darauf?

Das scheint mir keine besonders gute Approximation zu sein, wenn ich mir die Graphen der beteiligten Funktionen mal so anschaue.

Abgesehen davon war eine Stammfunktion gefragt, und nicht die Approximation des Integrals der Funktion innerhalb irgendwelcher Grenzen.


> Da könnte man einen Grenzübergang machen...?

???

Den, den Du in der Mitteilung postest? Diesen: $ [mm] \limes_{\Delta \rightarrow 0} \integral_{a}^{b}{}\integral_{x_{0}}^{x_{0} + \Delta}{x^{x_{0}}dx dx_{0}} [/mm] $?

Da kommt 0 raus. Oder bin ich schlaftrunken?

Gruß v. Angela


Bezug
        
Bezug
Integral x^x^x^3: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Mi 19.01.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]