matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegral von trig. Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Integral von trig. Funktion
Integral von trig. Funktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral von trig. Funktion: Lösung einfacher?
Status: (Frage) beantwortet Status 
Datum: 15:00 Do 21.01.2010
Autor: Adamantin

Aufgabe
Berechnen Sie die folgenden Integrale

a) [mm] \integral_{0}^{2 \pi}{sin(3x)*cos(4x) dx} [/mm]  

Ich habe die Frage in keinen anderen Forum gestellt

Liebe Grüße an euch Mathematiker, länger her, dass ich mal eine Frage eingestellt habe, wird ja wieder Zeit ;)

Also wir haben in unserer Mathevorlesung folgendes einfache Integral gehabt und lösen sollen als Hausaufgabe. Dabei stellt sich das Problem, dass ich keine sinnvolle Substitutionsmöglichkeit sehe und partiell integriert hätte, was sehr hässlich (für meine Verhältnisse wird). Über diverse Proben bzw doch über ausrechnen erhält man dann die Lösung, dass das Integral 0 ergibt, weil nunmal die Periode genau 2 [mm] \pi [/mm] beträgt.

Die erste Möglichkeit, dies zu sehen, war doch eine Substitution, z.B. sin(3x)=y, wodurch die substituierten Grenzen ja zu 0 und 0 werden! ABER ich behalte ja trotzdem cos(x) im Integral, das sich auch nicht wegkürzt, gelten dann die Grenzen? Das stört mich.

Ebenso habe ich versucht, mir die Periode der Gesamtfunktion zu erschließen, für sin(3x) ergibt sich ja 2/3 [mm] \pi [/mm] und für cos(4x) ergibt sich eine Periode von 1/2 [mm] \pi. [/mm] Daraus kann ich aber nicht erkennen, dass die Gesamtfunktion genau 2 [mm] \pi [/mm] besitzt, oder? Ebenso hatte ich mir überlegt, dass ein Integral über eine trigonometrische Funktion immer 0 ergibt, wenn die Grenzen eben genau eine Periode darstellen, weil die Funktionen ja punkt- oder achsensymmetrisch sind, aber da habe ich eben wieder jenes Periodenproblem...

        
Bezug
Integral von trig. Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:10 Do 21.01.2010
Autor: fred97

Schau mal hier:

http://www.mathe-seiten.de/fourier.pdf

auf Seite 6

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]