matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegral von folgender Fkt.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Integral von folgender Fkt.
Integral von folgender Fkt. < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral von folgender Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:55 So 05.10.2008
Autor: nina1

Aufgabe
Bestimmen Sie folgendes Integral:

[mm] \integral_{-\pi}^{\pi}{f(x) dx} [/mm]

mit f(x)=sin(x)-cos(x)


Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:

F(x) ist ja -cos(x)-sin(x)

und anscheinend kommt dann als Integral 0 raus.

Wenn ich mir aber den Graph dazu anschaue dann ist doch da eine Fläche.

Hat sich da da die negative Fläche mit der positiven aufgehoben?

und warum ist die Fläche 0 obwohl Fläche zwischen der x-Achse und der Funktion vorhanden ist?


Viele Grüße


Nina

        
Bezug
Integral von folgender Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 22:12 So 05.10.2008
Autor: abakus


> Bestimmen Sie folgendes Integral:
>  
> [mm]\integral_{-\pi}^{\pi}{f(x) dx}[/mm]
>  
> mit f(x)=sin(x)-cos(x)
>  
>
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>  
> F(x) ist ja -cos(x)-sin(x)
>  
> und anscheinend kommt dann als Integral 0 raus.
>  
> Wenn ich mir aber den Graph dazu anschaue dann ist doch da
> eine Fläche.
>  
> Hat sich da da die negative Fläche mit der positiven
> aufgehoben?

Ja. Genauer gesagt: die negative Fläche mit den beiden positiven Flächen.
Die kleine positive Fläche zwischen [mm] -\pi [/mm] und -0,75 [mm] \pi [/mm] und die größere positive Fläche zwischen [mm] 0,25\pi [/mm] und [mm] \pi [/mm] ergeben zusammen den gleichen Betrag wie die negative Fläche.
Gruß Abakus

>  
> und warum ist die Fläche 0 obwohl Fläche zwischen der
> x-Achse und der Funktion vorhanden ist?
>  
>
> Viele Grüße
>  
>
> Nina


Bezug
                
Bezug
Integral von folgender Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:45 Mo 06.10.2008
Autor: nina1

und soll/muss/kann man dann in solchen Fällen immer den Betrag nehmen?

Denn im Buch ist jetzt als Lösung die Fläche 0 angegeben.

Grüße,


Nina

Bezug
                        
Bezug
Integral von folgender Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 00:05 Di 07.10.2008
Autor: pelzig


> und soll/muss/kann man dann in solchen Fällen immer den
> Betrag nehmen?

Wenn du wirklich den Flächeninhalt zwischen x-Achse und dem Graph haben willst, nimmst du einfach den Betrag.
Das Integral gibt dir sozusagen eine "gerichteten Flächeninhalt", wenn man das nicht will, muss man Beträge drummachen.
  

> Denn im Buch ist jetzt als Lösung die Fläche 0 angegeben.

Wie gesagt... da kann man jetzt drüber diskutieren... hauptsache du weißt was du tust.

Gruß, Robert

Bezug
                        
Bezug
Integral von folgender Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 00:39 Di 07.10.2008
Autor: leduart

Hallo
In der zitierten Aufgabe steht: bestimme das Integral, da steht nicht : bestimme die Flaeche zwischen x-achse und der Funktion!
Integrale werden nicht nur benutzt um Flaechen auszurechen, sondern auch um ueber andere Sachen zu "summieren" In der Physik etwa um Energie oder Arbeit auszurechnen, und da kann dann schon 0 oder was negatives rauskommen.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]