matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegral umformen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - Integral umformen
Integral umformen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral umformen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:18 Di 09.08.2011
Autor: ethernity

Aufgabe
Also es ist eigentlich eine Umformung die Ich grad nicht verstehe.

und [mm] zwar:\integral_{0}^{1}{\bruch{1}{x} cos(\bruch{1}{x}) dx} [/mm] = [mm] \integral_{1}^{\infty}{\bruch{cos x}{x} dx} [/mm]

Wie kommt diese Umformung zustande? Wenn ich mir das mit Subsititution überlege komme ich auf sowas:
[mm] \integral_{0}^{1}{\bruch{1}{x} cos(\bruch{1}{x}) dx} [/mm] = [mm] \limes_{n\rightarrow 0} \integral_{n}^{1}{\bruch{1}{x} cos(\bruch{1}{x}) dx} [/mm] =  [mm] \limes_{n\rightarrow 0} -\integral_{1/n}^{1}{z*cos(z) dz}=\integral_{1}^{\infty}{z*cos(z) dz} [/mm]

Substitution mit z = [mm] \bruch{1}{x}. [/mm]
Dann gilt [mm] \bruch{dz}{dx}=-1/x^2, [/mm] also [mm] dx=-x^2*dz [/mm]

        
Bezug
Integral umformen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:28 Di 09.08.2011
Autor: schachuzipus

Hallo ethernity,


> Also es ist eigentlich eine Umformung die Ich grad nicht
> verstehe.
>  
> und [mm]zwar:\integral_{0}^{1}{\bruch{1}{x} cos(\bruch{1}{x}) dx}[/mm]
> = [mm]\integral_{1}^{\infty}{\bruch{cos x}{x} dx}[/mm]
>  Wie kommt
> diese Umformung zustande? Wenn ich mir das mit
> Subsititution überlege komme ich auf sowas:
> [mm]\integral_{0}^{1}{\bruch{1}{x} cos(\bruch{1}{x}) dx}[/mm] =
> [mm]\limes_{n\rightarrow 0} \integral_{n}^{1}{\bruch{1}{x} cos(\bruch{1}{x}) dx}[/mm]
> =  [mm]\limes_{n\rightarrow 0} -\integral_{1/n}^{1}{z*cos(z) dz}=\integral_{1}^{\infty}{z*cos(z) dz}[/mm]
>  
> Substitution mit z = [mm]\bruch{1}{x}.[/mm]
>  Dann gilt [mm]\bruch{dz}{dx}=-1/x^2,[/mm] also [mm]dx=-x^2*dz[/mm]  

Ja, das ist genau richtig, daher ist die Verwendung der Variable $x$ auch im Integral auf der rechten Seite etwas verwirrend. Besser hätte mal direkt $z$ geschrieben.

Substituiere direkt im Ausgangsintegral, dann bist du schnell bei der rechten Seite.

Anschließend einfach das $z$ in $x$ umbenennen ...



Gruß

schachuzipus


Bezug
                
Bezug
Integral umformen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:31 Di 09.08.2011
Autor: ethernity

Wo ist denn mein fehler?
Ich komm ja auf ein anderes Ergebnis...

Bezug
                        
Bezug
Integral umformen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:38 Di 09.08.2011
Autor: schachuzipus

Hallo nochmal,


> Wo ist denn mein fehler?
>  Ich komm ja auf ein anderes Ergebnis...

wieso?

[mm]z=\frac{1}{x}\Rightarrow dx=-x^2 \ dz[/mm] und [mm]\frac{1}{z}=x[/mm]

Also [mm]\int{\frac{1}{x}\cos(1/x) \ dx}=\int{\frac{1}{x}\cos(z)(-x^2) \ dz}=-\int{x\cos(z) \ dz}=-\int{\frac{\cos(z)}{z} \ dz}[/mm]

Nun noch die Grenzen substituieren:

[mm]x=0\Rightarrow z=\frac{1}{x}=\infty[/mm] und [mm]x=1\Rightarrow z=1[/mm]

Also [mm]\int\limits_{0}^{1}{\frac{1}{x}\cos(1/x) \ dx} \ = \ -\int\limits_{\infty}^{1}{\frac{\cos(z)}{z} \ dz} \ = \ \int\limits_{1}^{\infty}{\frac{\cos(z)}{z} \ dz}[/mm]

Gruß

schachuzipus


Bezug
                                
Bezug
Integral umformen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:41 Di 09.08.2011
Autor: ethernity

Danke habs auch grad gesehen!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]