matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisIntegral über Norm
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Integral über Norm
Integral über Norm < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral über Norm: Frage
Status: (Frage) beantwortet Status 
Datum: 13:38 Mi 20.07.2005
Autor: espa

Guten Tag!

Ich hatte bereits einmal die Frage gestellt, wie man folgendes Integral löst:

[mm] \integral [/mm] {log  [mm] \parallel [/mm] x  [mm] \parallel [/mm] dx} löst. Nun habe ich mich kundig gemacht und weiß, dass damit einfach die euklidische Norm gemeint ist.

Löst man dieses Integral nun mit Substitution? Was muss man denn dort einsetzen? log von Wurzel aus  [mm] (x_{1})²+(x_{2})²+... [/mm] ) ?? Doch bis wohin geht das n von [mm] x_{n} [/mm] dann?

Für Ihre Hilfe bedanke ich mich im Vorhinein recht herzlich, Ihre espa
Wie mache ich dies ohne Grenzen?

        
Bezug
Integral über Norm: Existiert wohl nicht
Status: (Antwort) fertig Status 
Datum: 19:54 Mi 20.07.2005
Autor: MatthiasKr

Hallo espa,

wenn ich dich richtig verstehe, möchtest Du das Integral

[mm]\integral_{\IR^n} {\ln||x|| d^nx}[/mm]

berechnen.

Hm, ich sage es mal so, wenn man die entsprechende technik beherrscht bzw. in der vorlesung gelernt hat, ist es ganz leicht.... ;-)
Bei der Funktion [mm]\ln ||x||[/mm] handelt es sich um eine sogenannte rotationssymmetrische funktion, das heißt, der funktionswert hängt nur von [mm]||x||[/mm] ab. Anschaulich gesehen ist die funktion auf sphären also immer konstant.
integrieren kann man solche funktionen sehr leicht, wenn man sie auf polarkoordinaten transformiert (was man natürlich schon mal vorher gemacht haben sollte), dann erhält man nämlich


[mm]\integral_{\IR^n}{\ln ||x|| d^n x}=k_n*\integral_{0}^{\infty}{\ln r * r^{n-1} dr}[/mm]

[mm]k_n[/mm] ist dabei das volumen bzw. die oberfläche der (n-1)-dimensionalen Einheitssphäre.

Was du nach der transformation direkt erkennst ist, dass das integral für [mm]n=1,2,3,...[/mm] nicht endlich sein kann also 'nicht existiert', da für [mm] $r\to \infty$ [/mm] auch [mm] $\ln [/mm] r$ unendlich groß wird, wenn auch sehr langsam.

Interessant ist aber die Frage, für welche $n$ das Integral zB. auf der Einheitskugel existiert. Da der Logarithmus bei $0$ eine Polstelle hat, ist das ja keinesfalls selbstverständlich. Vielleicht ist deine aufgabe so gemeint.

Ich hoffe, ich konnte dir ein wenig helfen.

Viele Grüße
Matthias


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]