matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenIntegral über Einheitskugel
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Integral über Einheitskugel
Integral über Einheitskugel < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral über Einheitskugel: Korrektur,Tipp
Status: (Frage) beantwortet Status 
Datum: 13:36 So 12.12.2010
Autor: sally99

Aufgabe
Sei [mm] K_1(0) [/mm] die Einheitskugel im  [mm] \IR^n [/mm] mit n [mm] \ge [/mm] 2.
Zeige: Die Funktion f(0)=0 und f(x)= [mm] \bruch{1}{\wurzel{1-||x||^2}} [/mm] für x [mm] \not= [/mm] 0 ist über die Einheitskugel integrierbar.
Berechne für n= 2,3,4 das Integral [mm] \integral_{K_1(0)}^{}{f dx}. [/mm]

Hallo!
Ich hoffe, ich mache das mit der Formatierung alles richtig...?

Mich beschäftigt der zweite Teil der obigen Aufgabe. Wir haben zur Zeit n-dimensionale Polarkoordinaten und den Transformationssatz als Themen. Deshalb gehe ich davon aus, dass wir das Integral mit Polarkoordinaten berechnen sollen.

Also für n=2 sieht die Funktion ja so aus:
f(x,y)= [mm] \bruch{1}{\wurzel{1-x^2+y^2}} [/mm] Das transformiert ist:
[mm] f(r,\phi)= \bruch{1}{\wurzel{1-r^2}} [/mm]
[mm] \integral_{K_1(0)}^{}{f dx}=\integral_{-1}^{1}{\integral_{0}^{2\pi}{\bruch{r}{\wurzel{1-r^2}}d\phi}dr}=...=4\pi [/mm]
Ist das korrekt?

Bei n=3 komme ich gewaltig ins Straucheln:
f(x,y,z)=f(x,y)= [mm] \bruch{1}{\wurzel{1-x^2+y^2+z^2}} [/mm] Das transformiert ist:
[mm] f(r,\phi_1,\phi_2)= \bruch{1}{\wurzel{1-r^2*(cos(\phi_1)^2*sin(\phi_2)^2+sin(\phi_1)^2*cos(\phi_2)^2+sin(\phi_2)^2)}} [/mm]
Denn 3D-Polarkoordinaten sind doch Kugelkoordinaten, oder? Oder kann ich da auch Zylinderkoordinaten nehmen?

Könnt ihr mir helfen? Das wäre super!!!!
Ganz viele Grüße von sally99

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integral über Einheitskugel: Antwort
Status: (Antwort) fertig Status 
Datum: 15:00 So 12.12.2010
Autor: MathePower

Hallo sally99,


[willkommenmr]


> Sei [mm]K_1(0)[/mm] die Einheitskugel im  [mm]\IR^n[/mm] mit n [mm]\ge[/mm] 2.
>  Zeige: Die Funktion f(0)=0 und f(x)=
> [mm]\bruch{1}{\wurzel{1-||x||^2}}[/mm] für x [mm]\not=[/mm] 0 ist über die
> Einheitskugel integrierbar.
>  Berechne für n= 2,3,4 das Integral
> [mm]\integral_{K_1(0)}^{}{f dx}.[/mm]
>  Hallo!
>  Ich hoffe, ich mache das mit der Formatierung alles
> richtig...?


Bis jetzt ist die Formatierung ok.


>  
> Mich beschäftigt der zweite Teil der obigen Aufgabe. Wir
> haben zur Zeit n-dimensionale Polarkoordinaten und den
> Transformationssatz als Themen. Deshalb gehe ich davon aus,
> dass wir das Integral mit Polarkoordinaten berechnen
> sollen.
>  
> Also für n=2 sieht die Funktion ja so aus:
>  f(x,y)= [mm]\bruch{1}{\wurzel{1-x^2+y^2}}[/mm] Das transformiert


Das muss doch hier lauten:

[mm]f(x,y)= \bruch{1}{\wurzel{1-\left\blue{(}x^2+y^2\right\blue{)}}}[/mm]


> ist:
>  [mm]f(r,\phi)= \bruch{1}{\wurzel{1-r^2}}[/mm]
>  
> [mm]\integral_{K_1(0)}^{}{f dx}=\integral_{-1}^{1}{\integral_{0}^{2\pi}{\bruch{r}{\wurzel{1-r^2}}d\phi}dr}=...=4\pi[/mm]


Wenn Du schon in Polarkoordinaten transformierst, dann richtig.

Es ergibt sich hier:

[mm]\integral_{K_1(0)}^{}{f dx}=\integral_{\blue{0}}^{1}{\integral_{0}^{2\pi}{\bruch{r}{\wurzel{1-r^2}}d\phi}dr}[/mm]


>  
> Ist das korrekt?
>  
> Bei n=3 komme ich gewaltig ins Straucheln:
>  f(x,y,z)=f(x,y)= [mm]\bruch{1}{\wurzel{1-x^2+y^2+z^2}}[/mm] Das


Hier ebenfalls Klammern setzen:

[mm]f(x,y,z)= \bruch{1}{\wurzel{1-\left\blue{(}x^2+y^2+z^2\right\blue{)}}}[/mm]


> transformiert ist:
>  [mm]f(r,\phi_1,\phi_2)= \bruch{1}{\wurzel{1-r^2*(cos(\phi_1)^2*sin(\phi_2)^2+sin(\phi_1)^2*cos(\phi_2)^2+sin(\phi_2)^2)}}[/mm]


Das muss doch hier lauten:

[mm]f(r,\phi_1,\phi_2)= \bruch{1}{\wurzel{1-r^2*(cos(\phi_1)^2*\blue{\cos}(\phi_2)^2+sin(\phi_1)^2*cos(\phi_2)^2+sin(\phi_2)^2)}}[/mm]

Für das zugehörige Integral benötigst Du noch
die Funktionaldeterminante der Parametertransformation.


>  
> Denn 3D-Polarkoordinaten sind doch Kugelkoordinaten, oder?

Ja.


> Oder kann ich da auch Zylinderkoordinaten nehmen?
>  
> Könnt ihr mir helfen? Das wäre super!!!!
>  Ganz viele Grüße von sally99
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.  


Gruss
MathePower

Bezug
                
Bezug
Integral über Einheitskugel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:36 So 12.12.2010
Autor: sally99

Hallo Mathepower!
Vielen Dank für deine schnelle und ausführliche Antwort!!!!!!!

> [willkommenmr]
>

Danke!!!!!!

>  
> [mm]\integral_{K_1(0)}^{}{f dx}=\integral_{\blue{0}}^{1}{\integral_{0}^{2\pi}{\bruch{r}{\wurzel{1-r^2}}d\phi}dr}[/mm]
>  

Oh, okay, dann erhalte ich nur noch [mm] 2\pi. [/mm]

> >  

>  >  [mm]f(r,\phi_1,\phi_2)= \bruch{1}{\wurzel{1-r^2*(cos(\phi_1)^2*sin(\phi_2)^2+sin(\phi_1)^2*cos(\phi_2)^2+sin(\phi_2)^2)}}[/mm]
>  
> Das muss doch hier lauten:
>  
> [mm]f(r,\phi_1,\phi_2)= \bruch{1}{\wurzel{1-r^2*(cos(\phi_1)^2*\blue{\cos}(\phi_2)^2+sin(\phi_1)^2*cos(\phi_2)^2+sin(\phi_2)^2)}}[/mm]
>

Deine Transformation habe ich jetzt im Internet gefunden, unser Prof hat sie allerdings  so definiert:
[mm] \vektor{x \\ y \\ z}=\vektor{r*cos(\phi_1)*sin(\phi_2) \\ r*sin(\phi_1)*cos(\phi_2) \\ r*sin(\phi_2)}, [/mm] deshalb bei mir das sin.
Für die letzte Koordinate habe ich auch [mm] r*cos(\phi_2) [/mm] gefunden.

Woran erkenne ich, was ich verwenden muss?

> Für das zugehörige Integral benötigst Du noch
> die Funktionaldeterminante der Parametertransformation.
>  

Stimmt, die ist: [mm] r^2*cos(\phi_2). [/mm]

Kannst du mir da nochmal helfen?
Viele Grüße
sally

Bezug
                        
Bezug
Integral über Einheitskugel: Antwort
Status: (Antwort) fertig Status 
Datum: 16:22 So 12.12.2010
Autor: MathePower

Hallo sally99,


> Hallo Mathepower!
>  Vielen Dank für deine schnelle und ausführliche
> Antwort!!!!!!!
>  
> > [willkommenmr]
>  >

> Danke!!!!!!
> >  

> > [mm]\integral_{K_1(0)}^{}{f dx}=\integral_{\blue{0}}^{1}{\integral_{0}^{2\pi}{\bruch{r}{\wurzel{1-r^2}}d\phi}dr}[/mm]
>  
> >  

> Oh, okay, dann erhalte ich nur noch [mm]2\pi.[/mm]
>
> > >  

> >  >  [mm]f(r,\phi_1,\phi_2)= \bruch{1}{\wurzel{1-r^2*(cos(\phi_1)^2*sin(\phi_2)^2+sin(\phi_1)^2*cos(\phi_2)^2+sin(\phi_2)^2)}}[/mm]

>  
> >  

> > Das muss doch hier lauten:
>  >  
> > [mm]f(r,\phi_1,\phi_2)= \bruch{1}{\wurzel{1-r^2*(cos(\phi_1)^2*\blue{\cos}(\phi_2)^2+sin(\phi_1)^2*cos(\phi_2)^2+sin(\phi_2)^2)}}[/mm]
>  
> >
>
> Deine Transformation habe ich jetzt im Internet gefunden,
> unser Prof hat sie allerdings  so definiert:
> [mm]\vektor{x \\ y \\ z}=\vektor{r*cos(\phi_1)*sin(\phi_2) \\ r*sin(\phi_1)*cos(\phi_2) \\ r*sin(\phi_2)},[/mm]
> deshalb bei mir das sin.


Dann ist  das keine Einheitskugel.


>  Für die letzte Koordinate habe ich auch [mm]r*cos(\phi_2)[/mm]
> gefunden.
>  
> Woran erkenne ich, was ich verwenden muss?


Je nach Prof ist das verschieden, welche Transformation verwendet wird.


> > Für das zugehörige Integral benötigst Du noch
> > die Funktionaldeterminante der Parametertransformation.
>  >  
> Stimmt, die ist: [mm]r^2*cos(\phi_2).[/mm]


Dann ist die Parameterdarstellung diese:

[mm]\pmat{x \\ y \\ z}=r*\pmat{\cos\left(\phi_{2}\right)*\cos\left(\phi_1\right) \\ \cos\left(\phi_{2}\right)*\sin\left(\phi_1\right) \\\ \sin\left(\phi_{2}\right)}[/mm]

Demnach hat sich Dein Prof bei der  Transformation verschrieben.


>  
> Kannst du mir da nochmal helfen?
>  Viele Grüße
>  sally


Gruss
MathePower

Bezug
                                
Bezug
Integral über Einheitskugel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:33 Di 21.12.2010
Autor: sally99

Hallo MathePower!

Ich habe es hinbekommen. Am Dienstag hat unser Prof das dann auch korrigiert. Dank dir musste ich die Aufgabe aber nicht nochmal rechnen.

Vielen, vielen Dank!!!!
sally99

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]