matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegral transformieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - Integral transformieren
Integral transformieren < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral transformieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:02 Di 25.10.2011
Autor: nhard

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Berechne:

$\integral_{-R}^{+R}\integral_{-\wurzel{R^2-x^2}}^{\wurzel{R^2-x^2}}{\wurzel{x^2+y^2} dydx}$



Hallo liebes Forum.

Sehe ich das richtig, dass die Grenzen dieses Integrals ein Kreis mit dem Radius R darstellen?

Dann würde ich versuchen in Polarkoordinaten überzugehen:

$dydx=dA=r*drd\varphi$

$r=\sqrt{x^2+y^2}$

Mit den Grenzen für die Integration über einen Kreis mit dem Radius R erhalte ich dann:

$\integral_{-R}^{+R}\integral_{-\wurzel{R^2-x^2}}^{\wurzel{R^2-x^2}}{\wurzel{x^2+y^2} dydx}=\integral_{0}^{R}\integral_{0}^{2\pi}{r^2} d\varphi dr}=\bruch{2}{3}\cdot\pi\cdot R^3$

Das Entpspricht dem Volumen einer halben Kugel mit dem Radius R?

Bin mir nicht ganz sicher, ob ich mir die Grenzen richtig "hergeleitet" habe (falls sie überhaupt stimmen).

Stimmt Folgendes:

1.

$\integral_{0}^{+R}\integral_{-\wurzel{R^2-x^2}}^{\wurzel{R^2-x^2}}{1} dydx}$

Dieses Integral entpricht einem Integral über einen Halben Kreis:

[Dateianhang nicht öffentlich]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)




2.

$\integral_{-R}^{+R}\integral_{0}^{\wurzel{R^2-x^2}}{1} dydx}$

Ist auch ein Halbkreis:

[Dateianhang nicht öffentlich]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)




3.

$\integral_{0}^{+R}\integral_{0}}^{\wurzel{R^2-x^2}}{1} dydx}$

Ist ein viertelkreis:

[Dateianhang nicht öffentlich]



Vielen Dank für eure Mühe!

lg

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Anhang Nr. 2 (Typ: png) [nicht öffentlich]
Anhang Nr. 3 (Typ: png) [nicht öffentlich]
        
Bezug
Integral transformieren: Antwort
Status: (Antwort) fertig Status 
Datum: 09:48 Di 25.10.2011
Autor: Al-Chwarizmi

Guten Tag nhard,

> Berechne:
>  
> [mm]\integral_{-R}^{+R}\integral_{-\wurzel{R^2-x^2}}^{\wurzel{R^2-x^2}}{\wurzel{x^2+y^2} dydx}[/mm]
>  
> Sehe ich das richtig, dass die Grenzen dieses Integrals einen
> Kreis mit dem Radius R darstellen?

Ja. Etwas genauer: Die Kreisscheibe mit Mittelpunkt O(0|0)
und Radius R.
  

> Dann würde ich versuchen in Polarkoordinaten
> überzugehen:
>  
> [mm]dydx=dA=r*drd\varphi[/mm]
>
> [mm]r=\sqrt{x^2+y^2}[/mm]
>  
> Mit den Grenzen für die Integration über einen Kreis mit
> dem Radius R erhalte ich dann:
>  
> [mm]\integral_{-R}^{+R}\integral_{-\wurzel{R^2-x^2}}^{\wurzel{R^2-x^2}}{\wurzel{x^2+y^2} dydx}=\integral_{0}^{R}\integral_{0}^{2\pi}{r^2} d\varphi dr}=\bruch{2}{3}\cdot\pi\cdot R^3[/mm]
>  
> Das Entpspricht dem Volumen einer halben Kugel mit dem
> Radius R?

Das stimmt zwar, ist aber dem Integranden nach nicht direkt
klar. Wenn man das Integral direkt als Volumenintegral
betrachtet, hätte man es mit einem anderen Körper als
einer Halbkugel zu tun, nämlich mit einem Drehkörper,
der aus einem Zylinder (Raiuus=Höhe=R) durch Ausbohren
einer kegelförmigen Vertiefung entsteht. Das Ganze erinnert
dann an die Idee, nach welcher Archimedes das Kugel-
volumen berechnet hat.   []Segner
  

> Bin mir nicht ganz sicher, ob ich mir die Grenzen richtig
> "hergeleitet" habe (falls sie überhaupt stimmen).
>
> Stimmt Folgendes:
>  
> 1.
>  
> [mm]\integral_{0}^{+R}\integral_{-\wurzel{R^2-x^2}}^{\wurzel{R^2-x^2}}{1} dydx}[/mm]
>  
> Dieses Integral entpricht einem Integral über einen Halben
> Kreis:
>  
> [Dateianhang nicht öffentlich]

Korrekt.  

>
> 2.
>  
> [mm]\integral_{-R}^{+R}\integral_{0}^{\wurzel{R^2-x^2}}{1} dydx}[/mm]
>  
> Ist auch ein Halbkreis:
>  
> [Dateianhang nicht öffentlich]

Stimmt ebenfalls.  

>
> 3.
>  
> [mm]\integral_{0}^{+R}\integral_{0}}^{\wurzel{R^2-x^2}}{1} dydx}[/mm]
>  
> Ist ein viertelkreis:
>  
> [Dateianhang nicht öffentlich]

Yep.  

LG   Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]