matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegral rekursiv
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - Integral rekursiv
Integral rekursiv < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral rekursiv: Idee
Status: (Frage) beantwortet Status 
Datum: 20:50 Fr 04.06.2010
Autor: Mimuu

Aufgabe
Rekursionsformel berechnen für:
[mm] \integral_{0}^{\pi/2}{(tan(x))^{n} dx} [/mm]

ich habe mir jetzt überlegt, tan = sin/cos
und die rekursionsformeln für sin und cos kenne ich. darf ich dann einfach schreiben tan= rekursionformel sin/ rekursionsformel cos

        
Bezug
Integral rekursiv: Antwort
Status: (Antwort) fertig Status 
Datum: 20:59 Fr 04.06.2010
Autor: rainerS

Hallo!

> Rekursionsformel berechnen für:
> [mm]\integral_{0}^{\pi/2}{(tan(x))^{n} dx}[/mm]
>  ich habe mir jetzt
> überlegt, tan = sin/cos
>  und die rekursionsformeln für sin und cos kenne ich. darf
> ich dann einfach schreiben tan= rekursionformel sin/
> rekursionsformel cos

Nein, aber der Ansatz mit Sinus und Cosinus ist nicht schlecht.

Der Trick bei diesen Integralen ist immer, den Integranden als Produkt zweier Funktionen zu schreiben und partiell zu integrieren. Hier haben wir

[mm]\integral_{0}^{\pi/2}{(tan(x))^{n} dx} = \integral_{0}^{\pi/2}\bruch{\sin^n x}{\cos^n x} dx[/mm] .

Das Problem stellt der Cosinus im Nenner dar. Jetzt überleg mal, wann man einen Bruch durch Substitution gut integrieren kann. Das geht dann sehr gut, wenn der Zähler etwas mit der Ableitung des Nenners zu tun hat.

Die Ableitung des Cosinus ist (bis aufs Vorzeichen) der Sinus, und der steht hier im Zähler. Also schaun wir doch mal: die Ableitung von

[mm]\bruch{1}{\cos^n x} [/mm]

ist

[mm] -n\bruch{-\sin x}{\cos^{n+1} x} = n \bruch{\sin x}{\cos^{n+1} x}[/mm].

Oder anders ausgedrückt: das Integral von

[mm] \bruch{\sin x}{\cos^{n} x} [/mm]

ist

(KORREKTUR!)

[mm] \bruch{1}{n-1}\bruch{1}{\cos^{n-1} x} [/mm] .

So, und jetzt zerlege [mm] \bruch{\sin^n x}{\cos^n x} [/mm] geschickt und integriere partiell!

  Viele Grüße
    Rainer



Bezug
                
Bezug
Integral rekursiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:14 Fr 04.06.2010
Autor: Mimuu

ich stehe hier gerade auf dem schlauch. ich habe versucht geschickt zu zerlegen, aber es kommt nix raus. kann ich bitte nochmal einen tipp haben?

Bezug
                        
Bezug
Integral rekursiv: Antwort
Status: (Antwort) fertig Status 
Datum: 22:19 Fr 04.06.2010
Autor: rainerS

Hallo!

> ich stehe hier gerade auf dem schlauch. ich habe versucht
> geschickt zu zerlegen, aber es kommt nix raus. kann ich
> bitte nochmal einen tipp haben?

Also du willst den Term [mm] $\bruch{\sin x}{\cos^n x}$ [/mm] haben:

  [mm] \integral_{0}^{\pi/2}{(tan(x))^{n} dx} = \integral_{0}^{\pi/2}\bruch{\sin^n x}{\cos^n x} dx [/mm]

  [mm] = \integral_{0}^{\pi/2} \bruch{\sin x}{\cos^n x} * \sin^{n-1} x\, dx [/mm] .

Und jetzt integrierst du partiell: [mm] $\sin^{n-1} [/mm] x$ ableiten, [mm] $\bruch{\sin x}{\cos^n x}$ [/mm] integrieren.

Viele Grüße
   Rainer

Bezug
                                
Bezug
Integral rekursiv: rückfrage
Status: (Frage) beantwortet Status 
Datum: 23:14 Fr 04.06.2010
Autor: Mimuu

vielen vielen dank für die hilfe:)

eine frage habe ich noch: einmal oder zweimal partiell integrieren?

Bezug
                                        
Bezug
Integral rekursiv: Antwort
Status: (Antwort) fertig Status 
Datum: 23:41 Fr 04.06.2010
Autor: rainerS

Hallo!

> vielen vielen dank für die hilfe:)
>  
> eine frage habe ich noch: einmal oder zweimal partiell
> integrieren?

Einmal reicht, und dann wieder Sinus und Cosinus zu Tangens zusammenfassen.

   Viele Grüße
     Rainer

Bezug
                
Bezug
Integral rekursiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:24 Fr 04.06.2010
Autor: Mimuu

ich hab jetzt nochmal nachgerechnet, aber wie komme ich darauf dass [mm] \integral_{}^{}{\bruch{sinx}{cos^{n}x}dx} [/mm] = [mm] \bruch{1}{n-1}*\bruch{1}{cos^{n}x} [/mm]

diesen schritt verstehe ich nicht:(

Bezug
                        
Bezug
Integral rekursiv: Antwort
Status: (Antwort) fertig Status 
Datum: 23:39 Fr 04.06.2010
Autor: rainerS

Hallo!

> ich hab jetzt nochmal nachgerechnet, aber wie komme ich
> darauf dass [mm]\integral_{}^{}{\bruch{sinx}{cos^{n}x}dx}[/mm] =
> [mm]\bruch{1}{n-1}*\bruch{1}{cos^{n}x}[/mm]

Sorry, Schreibfehler:

[mm]\integral_{}^{}{\bruch{sinx}{cos^{n}x}dx}=\bruch{1}{n-1}*\bruch{1}{cos^{n-1}x}[/mm]

Das müsstest du aber anhand der Ableitung von [mm] $\bruch{1}{cos^{n}x}$ [/mm] etwas weiter oben sehen.

  Viele Grüße
    Rainer

Bezug
                                
Bezug
Integral rekursiv: rückfrage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:35 So 06.06.2010
Autor: Mimuu

ich habe jetzt alle tipps berücksichtigt und noch einmal von vorne gerechnet, dann steht bei mir nach einmaligem partiellem ableiten:

[mm] \bruch{1}{n-1}*\bruch{1}{cos^{n-1}x}*sin^{n-1}x-\integral_{}^{}{\bruch{1}{n-1}*\bruch{1}{{cos^{n-1}x}}*(n-1)*sin^{n-2}x}*cosx [/mm]

[mm] =\bruch{1}{n-1}*\bruch{1}{cos^{n-1}x}*sin^{n-1}x-\integral_{}^{}{cos^{-n+2}x}*sin^{n-2}x [/mm]

ist dass dann schon die rekursionsformel, oder muss ich noch weiterrechnen?

Bezug
                                        
Bezug
Integral rekursiv: Antwort
Status: (Antwort) fertig Status 
Datum: 12:50 So 06.06.2010
Autor: Marcel

Hallo,

> ich habe jetzt alle tipps berücksichtigt und noch einmal
> von vorne gerechnet, dann steht bei mir nach einmaligem
> partiellem ableiten:

Du meinst sicherlich integrieren!

>  
> [mm]\bruch{1}{n-1}*\bruch{1}{cos^{n-1}x}*sin^{n-1}x-\integral_{}^{}{\bruch{1}{n-1}*\bruch{1}{{cos^{n-1}x}}*(n-1)*sin^{n-2}x}*cosx[/mm]
>  
> [mm]=\bruch{1}{n-1}*\bruch{1}{cos^{n-1}x}*sin^{n-1}x-\integral_{}^{}{cos^{-n+2}x}*sin^{n-2}x[/mm]
>  
> ist dass dann schon die rekursionsformel, oder muss ich
> noch weiterrechnen?

Ich hab's nicht nachgerecht (daher lasse ich die Frage mal als nicht vollständig beantwortet stehen), aber man sieht jedenfalls, dass man noch
[mm] $${cos^{-n+2}x}*sin^{n-2}=\frac{\sin^{n-2}x}{\cos^{-(-n+2)}x}=\frac{\sin^{n-2}x}{\cos^{n-2}x}=\left(\frac{\sin x}{\cos x}\right)^{n-2}=\tan^{n-2}x$$ [/mm]
umschreiben kann.

Analog:
[mm] $$\frac{1}{\cos^{n-1}x}*\sin^{n-1}x=\left(\frac{\sin x}{\cos x}\right)^{n-1}=\tan^{n-1}x\,.$$ [/mm]

Beste Grüße,
Marcel


Bezug
                                                
Bezug
Integral rekursiv: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:02 So 06.06.2010
Autor: MontBlanc

Hallo,

warum macht ihr es euch so schwer, wenn ich mich recht erinnere ist eine Herlitung mittel [mm] tan^2(x)=sec^2(x)-1 [/mm] ein ganzes stück kürzer

LG

Bezug
                                                        
Bezug
Integral rekursiv: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:06 So 06.06.2010
Autor: reverend

Hallo MontBlanc,

ich schrieb gestern schon irgendwo, dass Sekans und Cosekans nicht in Deutschland wohnen, sonder in England beheimatet sind...

Ehrlich, das benutzt hier kein Mensch. Außerdem kommt man doch mit sin, cos und tan gut hin, die andern drei Winkelfunktionen sind doch nur Kehrwerte davon. Insofern finde ich den vorgeschlagenen Weg nicht wirklich länger, zumal wenn man sich alle Lemmata zum Sekans sowieso erst herleiten muss.

Grüße
reverend

Bezug
                                                                
Bezug
Integral rekursiv: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:08 So 06.06.2010
Autor: MontBlanc

Hi,

das war mir nicht bewusst, dass das in Deutschland mehr oder minder ignoriert wird.

Ich habe es eben gerade auch ncht durchgerechnet, meinte mich nur erinnern zu können, dass es etwas kürzer war :)

LG

Bezug
                                                
Bezug
Integral rekursiv: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:27 So 06.06.2010
Autor: Mimuu

Vielen Dank für die vielen Tipps, ich hab die Aufgabe jetzt voll verstanden:)

Bezug
                
Bezug
Integral rekursiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:55 So 06.02.2011
Autor: mathestudent111

Hallo ich habe nochmal eine Frage zu dieser Aufgabe.

wie kann man rechnerisch zeigen, dass das Integral von
[mm] \bruch{\sin x}{\cos^{n} x} [/mm]



==>   [mm] \bruch{1}{n-1}\bruch{1}{\cos^{n-1} x} [/mm]


Ich habe jetzt rumgerechnet, aber komme nicht auf die Lösung.

Hoffe ihr könnt mich helfen :) Schonmal danke im Voraus.

Bezug
                        
Bezug
Integral rekursiv: Antwort
Status: (Antwort) fertig Status 
Datum: 14:14 So 06.02.2011
Autor: fencheltee


> Hallo ich habe nochmal eine Frage zu dieser Aufgabe.
>  
> wie kann man rechnerisch zeigen, dass das Integral von
>  [mm]\bruch{\sin x}{\cos^{n} x}[/mm]
>  
>
>
> ==>   [mm]\bruch{1}{n-1}\bruch{1}{\cos^{n-1} x}[/mm]

>  
>
> Ich habe jetzt rumgerechnet, aber komme nicht auf die
> Lösung.

hallo,
hier musst du partiell integrieren.
setze [mm] v=cos(x)^{-n} [/mm] und u'=sin(x)
wenn du richtig rechnest, hast du auf der linken und rechten seite das gleiche integral stehen (dass sich nur um einen faktor unterscheidet, also rüberbringen, ausklammern, und du bist fertig)

>  
> Hoffe ihr könnt mich helfen :) Schonmal danke im Voraus.

gruß tee

Bezug
                                
Bezug
Integral rekursiv: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:23 So 06.02.2011
Autor: mathestudent111

ah stimmt. super danke :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]