matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegral rechunug
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Integral rechunug
Integral rechunug < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral rechunug: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:40 Sa 21.01.2006
Autor: schiepchenmath

hallo leute, mal wieder integral rechung

ich habe folgende kurve: [mm] x^2/3 +y^2/3 [/mm] = [mm] a^2/3 [/mm]

mit a >0
und soll mit hilfe eines kurvenintegrals deren fläche berechnen und folgende parametrisierung benutzen x=acos³t, y=asin³t.

habe mir folgende schritte überlegt: x und y ersetzen und dann über t integrieren wobei t von 0 bis [mm] 2\pi [/mm] geht.....
bin mir nicht sicher ob das so richtig ist? meine überlegungen richtig?

        
Bezug
Integral rechunug: Welches Kurvenintegral?
Status: (Antwort) fertig Status 
Datum: 18:57 Sa 21.01.2006
Autor: MathePower

Hallo schiepchenmath,

> hallo leute, mal wieder integral rechung
>  
> ich habe folgende kurve: [mm]x^2/3 +y^2/3[/mm] = [mm]a^2/3[/mm]
>  
> mit a >0
>   und soll mit hilfe eines kurvenintegrals deren fläche
> berechnen und folgende parametrisierung benutzen x=acos³t,
> y=asin³t.
>  
> habe mir folgende schritte überlegt: x und y ersetzen und
> dann über t integrieren wobei t von 0 bis [mm]2\pi[/mm] geht.....
>  bin mir nicht sicher ob das so richtig ist? meine
> überlegungen richtig?

Um welches Kurvenintegral handelt es sich?

Gruß
MathePower

Bezug
                
Bezug
Integral rechunug: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:01 Sa 21.01.2006
Autor: schiepchenmath

also so richtig weiß ich nicht was du jetzt damit meinst......welches kurvenintegral, ich soll die fläche mit hilfe eines kurvenintegrals benutzen und ich denke mal das es ein geschlossenes sein muss.
oder was meintest du jetzt damit?

Bezug
                        
Bezug
Integral rechunug: So eins
Status: (Antwort) fertig Status 
Datum: 19:24 Sa 21.01.2006
Autor: MathePower

Hallo schiepchenmath,


> also so richtig weiß ich nicht was du jetzt damit
> meinst......welches kurvenintegral, ich soll die fläche mit
> hilfe eines kurvenintegrals benutzen und ich denke mal das
> es ein geschlossenes sein muss.
>  oder was meintest du jetzt damit?

z.B. so eins:

[mm]A\; = \;\int\limits_{x_0 }^{x_1 } {\int\limits_{g_0 (x)}^{g_1 (x)} {dy\;dx} } [/mm]

begrenzt von den Geraden [mm]x\;=\;x_{0}[/mm],[mm]x\;=\;x_{1}[/mm] und den Kurven [mm]y(x)\;=g_0 (x)[/mm],[mm]y(x)\;=g_1 (x)[/mm].

Natürlich läßt sich das auf Funktionen in Parameterform übertragen.

Gruß
MathePower


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]