matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegral nach Def
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - Integral nach Def
Integral nach Def < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral nach Def: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:41 Mo 02.06.2014
Autor: Schuricht

Aufgabe
[mm] \integral_{0}^{1}{x dx}:=\integral_{[0,1]}{f(x) dx}. [/mm] Berechnen Sie es nach der Definition des Integrals.

Wie berechnet man solche Integrale nach der Definition?

Ich habe:

[mm] \integral_{0}^{1}{x dx}:=\integral_{[0,1]}{f(x) dx}=\lim_{k\rightarrow\infty}\integral_{[0,1]}{f_k(x) dx}=\lim_{k\rightarrow\infty}\integral_{[0,1]}{\bruch{1}{k}[kx]dx} [/mm] mit [mm] f_k [/mm] := [mm] \bruch{1}{k}[kx]. [/mm]

        
Bezug
Integral nach Def: Antwort
Status: (Antwort) fertig Status 
Datum: 15:10 Mo 02.06.2014
Autor: Gonozal_IX

Hiho,

du schmeißt viele Dinge in einen Topf. Welches Integral sollst du denn berechnen? Das Riemann-Integral?
Das Lebesgue-Integral?

Deinen Ansätzen nach vermute ich mal das Lebesgue-Integral.
Welche Definition habt ihr denn genommen?

Ich tippe jetzt einfach mal als Grenzwert von monoton wachsenden kleineren Treppenfunktionen....

Wie du siehst fehlen da ne ganze Menge Informationen....

Und als Anwendungshinweis: Wie ist denn das Integral für einfache Funktionen definiert?
Man sollte die Definition dann auch schon anwenden....


Gruß,
Gono.

Bezug
                
Bezug
Integral nach Def: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:27 Di 03.06.2014
Autor: hamude

Wie würde es dann richtig lauten?

Bezug
                        
Bezug
Integral nach Def: Antwort
Status: (Antwort) fertig Status 
Datum: 19:31 Di 03.06.2014
Autor: Gonozal_IX

Hiho,

also ich hab dir wie viele Fragen gestellt?
Beantwortet hast du davon nicht eine, also kann man dir kaum helfen.

Falls meine Annahmen alle stimmen, ist dein Ansatz ok, denn dann hast du dir ja eine Folge von monoton wachsenden Treppenfunktionen definiert (was vielleicht zu zeigen wäre).

Wie ist das Integral für Treppenfunktionen definiert?
Das sollte man dann vielleicht verwenden....

Gruß,
Gono.

Bezug
                                
Bezug
Integral nach Def: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:33 Di 03.06.2014
Autor: Herby

Hi,

> Hiho,
>  
> also ich hab dir wie viele Fragen gestellt?

sofern es sich um den selben Fragesteller handelt ;-)

Grüße
Herby

Bezug
                                        
Bezug
Integral nach Def: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:37 Di 03.06.2014
Autor: Gonozal_IX

Ach hups, das hab ich jetzt im Eifer des Antwortens glatt übersehen.
Ich unterstelle das einfach mal ^^

Gruß & Danke für den Hinweis,
Gono

Bezug
                                                
Bezug
Integral nach Def: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:38 Di 03.06.2014
Autor: Herby

Hi,

> Ach hups, das hab ich jetzt im Eifer des Antwortens glatt
> übersehen.

Er/Sie vielleicht auch [grins]

Grüße
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]