matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegral mittels Substitution
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Integral mittels Substitution
Integral mittels Substitution < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral mittels Substitution: Frage
Status: (Frage) beantwortet Status 
Datum: 22:44 Fr 22.04.2005
Autor: Maiko

Hallo!

Ich möchte folgendes Integral lösen:

[mm] \bruch{1+2*\wurzel{x-1}}{x*(\wurzel{x-1}-2)} [/mm]

Ich bin folgendermaßen vorgegangen:
w=x-1

dw/dx=1
dx=1*dw

[mm] \integral_{}^{} {\bruch{1+2\wurzel{w}}{(w+1)(\wurzel{w}-2)} dw} [/mm]

Jetzt mach ich Partialbruchintegration
Bei mir bleibt nach einigen Schritten stehen:

[mm] 1+2*\wurzel{w} [/mm] = A(w+1) + B(w-4)

Leider bekomme ich beim Einsetzen der NST (w=4 und w=-1) auf einen negativen Wert in der Wurzel (w=-1).
Ich komme also beim Koeffizientenvergleich zu keinem Ergebnis.

Bitte um Hilfe! Was hab ich falsch gemacht.


        
Bezug
Integral mittels Substitution: Idee
Status: (Antwort) fertig Status 
Datum: 23:16 Fr 22.04.2005
Autor: sara_20

Versuch es mal mit w= [mm] \wurzel{x-1}. [/mm] Ich habe ihn eben so geloesst. Du solltest am Ende [mm] bekommen:2*arctg\wurzel{x-1} [/mm] + [mm] 4*ln|\wurzel{x-1} [/mm] -2|.
Das was du im zweiten Schritt gemacht hast ist ein wenig komplizierter wenn es wurzeln gibt.

Ich hoffe ich konnte dir helfen.

Bezug
                
Bezug
Integral mittels Substitution: Frage
Status: (Frage) beantwortet Status 
Datum: 23:36 Fr 22.04.2005
Autor: Maiko

Danke Sara.
Ich hätte es wahrscheinlich dazu schreiben sollen, dass ich die Aufgabe mit dieser Substitution bereits gelöst habe.

Ich dachte mir nur, dass eine Lösung mittels w=x-1 auch möglich sein müsste.

Vielleicht hat ja noch jmd. einen Tipp, wie ich die Aufgabe mit dieser Substitution lösen könnte?

Bezug
                        
Bezug
Integral mittels Substitution: Der einzige Weg!
Status: (Antwort) fertig Status 
Datum: 03:23 Sa 23.04.2005
Autor: Loddar

Hallo Maiko!


Wenn ich mir Sara's Vorschlag für die Stammfunktion $F(x)$ ansehe (die auch zu stimmen scheint ;-) ), wage ich zu behaupten, daß $z \ := \ [mm] \wurzel{x-1}$ [/mm] die einzige Substitution ist, die zum Ziel führt.


Gruß
Loddar


Bezug
                        
Bezug
Integral mittels Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 09:02 Sa 23.04.2005
Autor: Paulus

Lieber Maiko

bitte beachte auch noch, dass die Voraussetztungen für eine Partialbruchzerlegung bei deinem Lösungsversuch gar nicht gegeben sind!

Es müsste ja [mm] $\bruch{\mbox{Polynom}}{\mbox{Polynom}}$ [/mm] sein! Da haben Wurzeln nichts verloren!

Mit lieben Grüssen

Paul

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]