matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegral mittels Partialbruch
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Integral mittels Partialbruch
Integral mittels Partialbruch < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral mittels Partialbruch: Stimmt das so?
Status: (Frage) beantwortet Status 
Datum: 18:12 Di 11.01.2011
Autor: racy90

Hallo,

Ich soll das Integral mittels Partialbruchzerlegung lösen,doch ich muss sagen ,ich bin etwas verwirrt.

Die Angabe lautet: int [mm] dx/(x(x^2-1)) [/mm]

Steht das dx jetzt für 1 oder wie??

Wenn das richtig ist hätt,ich dann noch weiter aufgeteilt

(A/(x-1))+(B/(x+1))+(C/x)

        
Bezug
Integral mittels Partialbruch: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 Di 11.01.2011
Autor: abakus


> Hallo,
>  
> Ich soll das Integral mittels Partialbruchzerlegung
> lösen,doch ich muss sagen ,ich bin etwas verwirrt.
>  
> Die Angabe lautet: int [mm]dx/(x(x^2-1))[/mm]
>  
> Steht das dx jetzt für 1 oder wie??

Hallo,
das dx "steht" nicht für 1, das dx steht in JEDEM Integralterm.
Da man allerdings 1*dx einfach als dx schreiben kann, ist es tatsächlich möglich, die 1 nicht mitzuschreiben.

>  
> Wenn das richtig ist hätt,ich dann noch weiter aufgeteilt
>  
> (A/(x-1))+(B/(x+1))+(C/x)

Das ist gut so.
Gruß Abakus


Bezug
                
Bezug
Integral mittels Partialbruch: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:18 Di 11.01.2011
Autor: racy90

okay danke

Bezug
                        
Bezug
Integral mittels Partialbruch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:30 Di 11.01.2011
Autor: racy90

Ich hätt noch ne Frage zu den Bsp

wie soll ich die koeff vergleichen wenn links nur dx steht??

[mm] dx/(x(x^2-1))=(A/(x-1))+(B/(x+1))+(C/x) [/mm]

[mm] dx=A(x^2+x)+B(x^2-x)+C [/mm]

[mm] dx=Ax^2+Ax+Bx^2-Bx+C [/mm]

Bezug
                                
Bezug
Integral mittels Partialbruch: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 Di 11.01.2011
Autor: schachuzipus

Hallo racy90,

> Ich hätt noch ne Frage zu den Bsp
>
> wie soll ich die koeff vergleichen wenn links nur dx
> steht??

>

Es ist [mm]\int{\frac{dx}{x(x^2-1)}}=\int{\frac{1}{x(x^2-1)} \ dx}[/mm]

> [mm]dx/(x(x^2-1))=(A/(x-1))+(B/(x+1))+(C/x)[/mm]
>
> [mm]dx=A(x^2+x)+B(x^2-x)+C[/mm] [mm]\red{\cdot{}(x^2-1)}[/mm]
>
> [mm]dx=Ax^2+Ax+Bx^2-Bx+C[/mm]

Linkerhand steht [mm]1[/mm]

Und das ist [mm]=0\cdot{}x^2+0\cdot{}x+1[/mm]

Rechterhand musst du nochmal nachbessern bei dem [mm]C[/mm] und dann nach Potenzen von x sortieren ...


Gruß

schachuzipus


Bezug
                                        
Bezug
Integral mittels Partialbruch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:06 Di 11.01.2011
Autor: racy90

okay das hab ich jetzt getan,doch beim koeff vergleich stockt es jetzt

ich hab [mm] 0*x^2+0*x+1=(A+B+C)x^2+(A+B)x-C [/mm]

A+B+C=0
A+B=0
-C=1

nur jetzt kann ich nicht wirklich was umformen,das ich ein ergebnis bekomm


Bezug
                                                
Bezug
Integral mittels Partialbruch: Antwort
Status: (Antwort) fertig Status 
Datum: 19:11 Di 11.01.2011
Autor: fred97


> okay das hab ich jetzt getan,doch beim koeff vergleich
> stockt es jetzt
>  
> ich hab [mm]0*x^2+0*x+1=(A+B+C)x^2+(A+B)x-C[/mm]

Nein, hier muß

               [mm]0*x^2+0*x+1=(A+B+C)x^2+(A-B)x-C[/mm]

stehen

FRED

>  
> A+B+C=0
>  A+B=0
>  -C=1
>  
> nur jetzt kann ich nicht wirklich was umformen,das ich ein
> ergebnis bekomm
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]