matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisIntegral ln(x)/x
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Schul-Analysis" - Integral ln(x)/x
Integral ln(x)/x < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral ln(x)/x: Substitutionsregel?
Status: (Frage) beantwortet Status 
Datum: 13:04 Mo 28.03.2005
Autor: panzer_85

Ich soll zeigen, dass  [mm] \integral_{e^{1-a}}^{\infty} [/mm] { [mm] \bruch{a+ln(x)}{x} [/mm] dx} unabghängig von a ist! Dazu muss ich doch die Funktion integrieren oder!?

Als erstes habe ich das Integral aufgeteilt in [mm] \integral_{e^{1-a}}^{\infty} [/mm] { [mm] \bruch{a}{x} [/mm] dx} + [mm] \integral_{e^{1-a}}^{\infty} [/mm] { [mm] \bruch{ln(x)}{x} [/mm] dx}. Das erste Integral hat die Stammfunktion [a*ln(x)] so weit so gut, aber wie siehts mit dem 2. Integral aus? Ich habs mit der Substitutionsregel versucht, weil x^-1 die Ableitung von ln(x) ist, aber es klappt nicht.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integral ln(x)/x: Substitution z := ln(x)
Status: (Antwort) fertig Status 
Datum: 13:23 Mo 28.03.2005
Autor: Loddar

Hallo ...


> Ich soll zeigen, dass [mm]\integral_{e^{1-a}}^{\infty}{\bruch{a+ln(x)}{x} dx}[/mm] unabhängig von a ist!
> Dazu muss ich doch die Funktion integrieren oder!?

[ok] Ganz genau ...


> Als erstes habe ich das Integral aufgeteilt in
> [mm]\integral_{e^{1-a}}^{\infty}{\bruch{a}{x} dx} + \integral_{e^{1-a}}^{\infty}{\bruch{ln(x)}{x} dx}[/mm].
> Das erste Integral hat die Stammfunktion [a*ln(x)] so weit so
> gut, aber wie siehts mit dem 2. Integral aus? Ich habs mit
> der Substitutionsregel versucht, weil x^-1 die Ableitung
> von ln(x) ist, aber es klappt nicht.

Das sieht doch schon alles sehr gut aus [daumenhoch] !!

Auch der Ansatz über die Substitution ist sehr gut:

$z \ := \ [mm] \ln(x)$ $\Rightarrow$ [/mm]  $z' \ = \ [mm] \bruch{dz}{dx} [/mm] \ = \ [mm] \bruch{1}{x}$ $\gdw$ [/mm]  $dx \ = \ x * dz$

Nun einsetzen:

[mm] $\integral_{}^{} {\bruch{\ln(x)}{x} \ dx} [/mm] \ = \ [mm] \integral_{}^{} {\bruch{z}{x} \ x *dz} [/mm] \ = \ [mm] \integral_{}^{} [/mm] {z \ dz} \ = \ ...$

Na, dieses Integral solltest Du ja hinkriegen, oder? ;-)

[aufgemerkt] Umwandlung der Integrationsgrenzen oder Re-Substitution nicht vergessen!

Gruß
Loddar


Bezug
                
Bezug
Integral ln(x)/x: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:46 Mo 28.03.2005
Autor: panzer_85

Danke. Das hätte ich soweit

[mm] \integral_{e^{1-a}}^{\infty} [/mm] { [mm] \bruch{ln(x)}{x} [/mm] dx} = [mm] \integral_{ln(e^{1-a})}^{ln(\infty)} [/mm] {x dx}

aber wie zeige ich nun, dass a unabhängig von

[mm] \integral_{e^{1-a}}^{\infty} {\bruch{a}{x} dx} [/mm] + [mm] \integral_{ln(e^{1-a})}^{ln(\infty)} [/mm] {x dx}

ist. Was ist [mm] ln(\infty)? [/mm]

Bezug
                        
Bezug
Integral ln(x)/x: Uneigentliches Integral
Status: (Antwort) fertig Status 
Datum: 14:10 Mo 28.03.2005
Autor: Loddar

Hallo!


Bei Deinem Aufgabentyp spricht man von sog. uneigentlichen Integralen.
Diese löst man, indem man folgendermaßen vorgeht (Grenzwertbetrachtung):

[mm] $\integral_{a}^{\infty} [/mm] {f(x) \ dx} \ = \ [mm] \limes_{K\rightarrow\infty}\integral_{a}^{K} [/mm] {f(x) \ dx}$


> aber wie zeige ich nun, dass a unabhängig von
>  
> [mm]\integral_{e^{1-a}}^{\infty} {\bruch{a}{x} dx}[/mm] +  [mm]\integral_{ln(e^{1-a})}^{ln(\infty)}[/mm] {x dx}
>  
> ist. Was ist [mm]ln(\infty)?[/mm]

Auch der [mm] $\ln(x)$ [/mm] geht für $x [mm] \to \infty$ [/mm] gegen [mm] $\infty$. [/mm]

Um diese Problematik aber zu umgehen, empfehle ich hier lieber die Re-Substitution, da dann die Integrationsgrenzen gleich bleiben.


[mm] $\integral_{e^{1-a}}^{\infty}{\bruch{a}{x} + \bruch{\ln(x)}{x} \ dx}$ [/mm]

$= \ [mm] \limes_{K\rightarrow\infty} \integral_{e^{1-a}}^{K}{\bruch{a}{x} + \bruch{\ln(x)}{x} \ dx}$ [/mm]

$= \ [mm] \limes_{K\rightarrow\infty} \left[a*\ln(x) + \bruch{1}{2}*\ln^2(x)\right]_{e^{1-a}}^{K}$ [/mm]

Nun einfach die Grenzen einsetzen und die Grenzwertbetrachtung durchführen. Dieses Ergebnis für den Grenzwert sollte dann unabhängig von $a$ sein.

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]