matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegral bestimmen (partiell)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Integral bestimmen (partiell)
Integral bestimmen (partiell) < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral bestimmen (partiell): Korrektur
Status: (Frage) beantwortet Status 
Datum: 17:20 Mo 06.02.2012
Autor: JamesBlunt

Ich soll ein Integral berechnen.. (partielle Integration)..
Allerdings komme ich zu keinem Ergebnis..
Ich hänge mal meine Ergebnisse an..
Ich hoffe es kann wer helfen..
Lg

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Integral bestimmen (partiell): Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 Mo 06.02.2012
Autor: notinX

Hallo,

> Ich soll ein Integral berechnen.. (partielle
> Integration)..
>  Allerdings komme ich zu keinem Ergebnis..
>  Ich hänge mal meine Ergebnisse an..
>  Ich hoffe es kann wer helfen..
>  Lg

wenn Du Deine Rechnung eintippst erhöhst Du damit die Chance auf eine Antwort ungemein, dann muss nämlich der potentielle Helfer nicht alles für Dich eintippen.
Partielle Integration sieht so aus:
[mm] $\int h'(x)\cdot g(x)\,\mathrm{d}x=[h(x)\cdot g(x)]-\int h(x)\cdot g'(x)\,\mathrm{d}x$ [/mm]
Bring Deine Rechnung damit in Einklang, dann passts.

Gruß,

notinX

Bezug
                
Bezug
Integral bestimmen (partiell): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:34 Mo 06.02.2012
Autor: JamesBlunt

bei mir im Buch steht jedoch die partielle Gleichung so, wie ich sie angewende habe..?!

Bezug
                        
Bezug
Integral bestimmen (partiell): Antwort
Status: (Antwort) fertig Status 
Datum: 18:38 Mo 06.02.2012
Autor: Adamantin


> bei mir im Buch steht jedoch die partielle Gleichung so,
> wie ich sie angewende habe..?!

Du hast auf deinem Blatt überhaupt keine Gleichung angegeben! Du hast lediglich die Lösung präsentiert und die ist falsch. Wie mein Vorredner dir sagen wollte, musst du das, was du beim ersten Schritt als Funktion lässt (bei dir g(x)) im zweiten Integral ableiten. Du hast aber einmal die Funktion [mm] $x^2$ [/mm] aufgeleitet und dann wieder abgeleitet, das ist falsch. Du musst sie integriert lassen und dafür die andere Funktion ableiten! Nämlich den $ln(x)$ zu $1/x$. Das taucht bei dir aber nirgendwo auf.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]