matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegral bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - Integral bestimmen
Integral bestimmen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:30 Mi 29.05.2013
Autor: Die_Suedkurve

Aufgabe
Bestimmen Sie folgendes Integral mit Hilfe der Substitutionsregel:

[mm] \integral_{0}^{log 2}{\wurzel{e^x-1} dx} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

ich weiß nicht, was ich substituieren soll, damit ich gescheit integrieren kann.
Kann mir bitte jemand einen Ansatz nennen?

Grüsse
Alexander

        
Bezug
Integral bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:37 Mi 29.05.2013
Autor: notinX

Hallo,

> Bestimmen Sie folgendes Integral mit Hilfe der
> Substitutionsregel:
>  
> [mm]\integral_{0}^{log 2}{\wurzel{e^x-1} dx}[/mm]
>  Ich habe diese
> Frage in keinem Forum auf anderen Internetseiten gestellt.
>  
> Hallo,
>  
> ich weiß nicht, was ich substituieren soll, damit ich
> gescheit integrieren kann.
>  Kann mir bitte jemand einen Ansatz nennen?

ansehen kann man das solchen Funktionen (zumindest ohne eine gehörige Portion Erfahrung) nicht. Wie wärs mit ausprobieren? So viele Möglichkeiten gibts ja nicht.
Ich will ja mal nicht so sein und geb Dir nochn Tipp: Die Wurzel sollte nicht mitsubstituiert werden.

>  
> Grüsse
>  Alexander

Gruß,

notinX

Bezug
                
Bezug
Integral bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:27 Do 30.05.2013
Autor: Die_Suedkurve

Hallo,

Ok, ich habs raus.
Ich habe zweimal substituiert.
Die erste Substitution ist t = [mm] e^x. [/mm]
Das Ergebnis ist 2 - [mm] \bruch{\pi}{2} [/mm]

Grüsse
Alex

Bezug
        
Bezug
Integral bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:35 Do 30.05.2013
Autor: Die_Suedkurve

Aufgabe
Bestimmen Sie folgendes Integral mit Hilfe der Substitutionsregel:

[mm] \integral{x\wurzel[3]{8+x} dx} [/mm]

Meine Lösung ist folgende, aber Wolfram Alpha sagt mir, dass sie falsch ist.
Wo ist der Fehler?


Ersetze y = [mm] \wurzel[3]{8+x} [/mm]
[mm] \gdw y^3 [/mm] = x + 8
[mm] \gdw [/mm] x(y) = [mm] y^3 [/mm] - 8
x'(y) = [mm] 3y^2 [/mm]

[mm] \integral{x\wurzel[3]{8+x} dx} [/mm]
= [mm] \integral{(y^3 - 8)*y*3y^2 dy} [/mm]
= [mm] 3*\integral{(y^6 - 8y^3) dy} [/mm]
= [mm] 3*(\bruch{1}{7}y^7 [/mm] - [mm] 2y^4) [/mm]
= [mm] \bruch{3}{7}y^7 [/mm] - [mm] 6y^4 [/mm]
= [mm] \bruch{3}{7}\wurzel[3]{8+x}^7 [/mm] - [mm] 6*\wurzel[3]{8+x}^4 [/mm]

Wo ist der Fehler?

Bezug
                
Bezug
Integral bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:47 Do 30.05.2013
Autor: Gonozal_IX

Hiho,

vorweg: Ertelle doch bitte für eine neuer Frage auch ein neues Thema.

> Wo ist der Fehler?

Wie kommst du drauf, dass da ein Fehler drin ist?

MFG
Gono.

Bezug
                        
Bezug
Integral bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:14 Do 30.05.2013
Autor: Die_Suedkurve


> Hiho,
>  
> vorweg: Ertelle doch bitte für eine neuer Frage auch ein
> neues Thema.
>  
> > Wo ist der Fehler?
> Wie kommst du drauf, dass da ein Fehler drin ist?
>  
> MFG
>  Gono.

Hi,

Entschuldigung, mache ich das nächste Mal!

Ich habe das ganze nochmal per Hand nachgerechnet, und es stimmt doch...
Also alles gut. :D

Grüsse
Alex

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]