matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegral bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Integral bestimmen
Integral bestimmen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:37 So 17.12.2006
Autor: borto

hallo,

könnt ihr mir helfen, wie ich die stammfunktionen zu diesem integral bilden kann, bitte?

Danke im Voraus.

1) [mm] \bruch{1}{\wurzel{24+8x-16x^2}} [/mm]

2) [mm] \bruch{1}{\wurzel{1-(3x-2)^2}} [/mm]

3) [mm] \bruch{x}{\wurzel{1-(3x)^2}} [/mm]

Lg
borto

        
Bezug
Integral bestimmen: zu Aufgabe 3
Status: (Antwort) fertig Status 
Datum: 03:15 So 17.12.2006
Autor: Loddar

Hallo borto!


> 3) [mm]\bruch{x}{\wurzel{1-(3x)^2}}[/mm]

Substituiere hier: $z \ := \ [mm] 1-(3x)^2 [/mm] \ = \ [mm] 1-9x^2$ [/mm]  mit  $z' \ = \ [mm] \bruch{dz}{dx} [/mm] \ = \ -18*x$


Gruß
Loddar


Bezug
                
Bezug
Integral bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:22 So 17.12.2006
Autor: vikin

Hallo,

[mm] \bruch{x}{\wurzel{1-9x^2}} [/mm]

z:= [mm] 1-9x^2 [/mm]

dx := [mm] \bruch{dz}{-18x} [/mm]

Nun habe ich folgendes gemacht:

[mm] \bruch{x}{\wurzel{z}} [/mm] * [mm] \bruch{dz}{-18x} [/mm]

Nun habe ich die x's gekürzt.


Sodass ich folgendes raus habe:


[mm] \bruch{1}{-18 * \wurzel{z}} [/mm]    =    

- [mm] \bruch{1}{18 * z^(1/2)} [/mm]         =

-18 * [mm] z^{- \bruch{1}{2}} [/mm]  

Sodass die Stammfunktion, also die Aufleitung wie folgt lautet:

[ -36 * [mm] z^{\bruch{1}{2}} [/mm]  ]

oder?
Also ich persönlich glaube, dass das falsch ist. Ich habe par werte eingestzt und es kommt was anderes raus als im derive.

Aber im Derive habe ich komischer Weise eine komplexe Lösung mit i wenn ich dort werte einsetze.

Ist nun die obige Aufleitung falsch oder doch richtig?
Bin sehr verwirrt.


Mit freundlichem Gruß
vikin

Bezug
                        
Bezug
Integral bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:30 So 17.12.2006
Autor: Zwerglein

Hi, vikin,

> [mm]\bruch{x}{\wurzel{1-9x^2}}[/mm]
>  
> z:= [mm]1-9x^2[/mm]
>  
> dx := [mm]\bruch{dz}{-18x}[/mm]
>  
> Nun habe ich folgendes gemacht:
>  
> [mm]\bruch{x}{\wurzel{z}}[/mm] * [mm]\bruch{dz}{-18x}[/mm]
>  
> Nun habe ich die x's gekürzt.

Du musst schon hinschreiben, wann Du das Integral und wann die Stammfunktion meinst.
Das alles soll also noch die Umformung der Integrandenfunktion sein, stimmt's?
  

> Sodass ich folgendes raus habe:
>
> [mm]\bruch{1}{-18 * \wurzel{z}}[/mm]    =    
>
> - [mm]\bruch{1}{18 * z^(1/2)}[/mm]         =

>

> -18 * z ^(1/2)  

Die Umformung gibt's nicht!
Richtig wäre:

[mm] -\bruch{1}{18}*z^{-\bruch{1}{2}} [/mm]

> Sodass die Stammfunktion, also die Aufleitung wie folgt
> lautet:
>  
> [ -36 z ^(1/2) ]

Richtig wäre nach meiner obigen Bemerkung die Stammfunktion:

[mm] -\bruch{1}{9}*z^{\bruch{1}{2}} [/mm] (+c)

Und: Rücksubstitution nicht vergessen!

mfG!
Zwerglein

Bezug
                                
Bezug
Integral bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:39 So 17.12.2006
Autor: vikin

Hallo,

und wirklich danke, das war ein sehr dummer Fehler von mir.

Nun habe ich auch das gleiche wie du rausbekommen.


Ich habe nun eine Frage zu der Aufgabe 1:

[mm] \bruch{1}{\wurzel{24+8x-16x^2}} [/mm]

Ganz spontan würde ich hier nun z:= [mm] 24+8x+16x^2 [/mm]    nehmen.
Aber stört es, dass im Zähler kein x vorhanden ist, und ich diese x auch deshalb nicht wegmachen, also kürzen oder so kann.

Hättet ihr vielleicht Ansätze für mich?

Danke im Voraus.

Mit freundlichem Gruß
vikin

Bezug
                                        
Bezug
Integral bestimmen: siehe unten
Status: (Antwort) fertig Status 
Datum: 12:04 So 17.12.2006
Autor: Loddar

Hallo viki!


Siehe auch Zwerglein's Antwort.


Mit einigen Umformungen / quadratischer Ergänzung erhält man im Nenner:

[mm] $\wurzel{24+8x-16x^2} [/mm] \ = \ [mm] \wurzel{25-(1-4x)^2} [/mm] \ = \ [mm] \wurzel{25*\left[1-\bruch{(4x-1)^2}{5^2}\right] \ } [/mm] \ = \ [mm] 5*\wurzel{1-\left(\bruch{4x-1}{5}\right)^2 \ }$ [/mm]

Nun den Ausdruck in den runden Klammern substituieren.


Gruß
Loddar


Bezug
        
Bezug
Integral bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:37 So 17.12.2006
Autor: Zwerglein

Hi, vikin,

> könnt ihr mir helfen, wie ich die stammfunktionen zu diesem
> integral bilden kann, bitte?
>  
> 1) [mm]\bruch{1}{\wurzel{24+8x-16x^2}}[/mm]
>  
> 2) [mm]\bruch{1}{\wurzel{1-(3x-2)^2}}[/mm]

Bei Aufgabe 2 musst Du z=(3x-2) substituieren; dann führt das auf den arcsin(z).

Bei Aufgabe 1 musst Du quadratisch ergänzen.
Dann bekommst Du in der Wurzel den Ausdruck: 25 - [mm] (4x-1)^{2}. [/mm]

Nach entsprechender Umformung und Substitution ähnlich wie bei Aufgabe 2 kommst Du wieder zum arcsin.

mfG!
Zwerglein


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]