matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegral bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Integral bestimmen
Integral bestimmen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:16 Di 09.05.2006
Autor: Der_Malte

Aufgabe
Bestimmen Sie für die folgende Funktion k so, dass die von der Parabel und der ersten Achse eingeschlossene Fläche den Flächeninhalt  [mm] \bruch{64}{3} [/mm] besitzt.

f(x)=- [mm] \bruch{1}{4} x^{2} [/mm] + k

Hier zuerst mein Ansatz:

[mm] \integral_{-a}^{a}{f(x) dx}= -\bruch{1}{4}* \integral_{-a}^{a}{( x^{2}) dx} [/mm] + [mm] k*\integral_{-a}^{a}{(1) dx} [/mm]

also folgt: - [mm] \bruch{1}{4} [/mm] * ( [mm] \bruch{ a^{3}}{4} [/mm] - [mm] \bruch{- a^{3}}{4} [/mm] ) + k * (a - (-a)) =  [mm] \bruch{64}{3} [/mm]

Hierzu gekommen bin ich durch die Anwendung der Produkt- und Additionsregel der Integralrechnung. -a und a habe ich als Grenze gesetzt, da es sich ja um eine Parabel handelt und die x-Werte daher ja vom Betrag her gleich sein müssen auf Grund von Symmetrie.
Wenn ich diese Gleichung jetzt in meinem Taschenrechner eingebe (TI-89;mit F2 und dann solve. Auflösen sollte der Taschenrechner nach x und a) erhalte ich jedoch nur:

2*a*x - [mm] \bruch{ x^{3}}{6} [/mm] =  [mm] \bruch{64}{3} [/mm]

Habe ich einen Fehler in meiner Rechnung, weshalb kein konkretes Ergebnis rauskommt oder ist der Taschenrechner nicht in der Lage die Gleichung zu berechnen? Gibt es in diesem Fall noch weitere Ansätze, wie ich zur Lösung kommen kann?

MfG,

Malte

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integral bestimmen: 2 Hinweise
Status: (Antwort) fertig Status 
Datum: 16:27 Di 09.05.2006
Autor: Roadrunner

Hallo Malte!


Zum einen lautet die Stammfunktion von [mm] $\integral{x^2 \ dx} [/mm] \ = \ [mm] \bruch{x^3}{\red{3}}$ [/mm] .


Zudem kannst Du ja auch den Wert $a_$ (also die Integrationsgrenzen) in Abhängigkeit vom Parameter $k_$ darstellen, da es sich hier ja um die Nullstellen der Parabel handelt:

[mm] $-\bruch{1}{4}x^2+k [/mm] \ = \ [mm] -\bruch{1}{4}*\left(x^2-4k\right) [/mm] \ = \ 0$    [mm] $\gdw$ $x_{1/2} [/mm] \ = \ [mm] \pm [/mm] \ [mm] 2*\wurzel{k}$ [/mm]


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]