matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Integral berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Analysis des R1" - Integral berechnen
Integral berechnen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral berechnen: Substitution
Status: (Frage) beantwortet Status 
Datum: 13:16 Mi 07.11.2012
Autor: mikexx

Aufgabe
Moin, wie kann ich am besten

[mm] $\int_{[0,1]}(1+\cos(2\pi x))^n\, [/mm] dx$

berechnen?


Ich dachte an substituieren, aber ich weiß nicht genau, welche Substitution am sinnigsten ist..

1) [mm] $u=1+\cos(2\pi [/mm] x)$

oder

2) [mm] $u=\cos(2\pi [/mm] x)$

oder

3) [mm] $u=\cos(2\pi [/mm] x)$

        
Bezug
Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:46 Mi 07.11.2012
Autor: kamaleonti

Hi,
>  
> [mm]\int_{[0,1]}(1+\cos(2\pi x))^n\, dx[/mm]

Substitution stelle ich mir schwierig vor. Ein Weg der nicht schön ist, aber funktionieren dürfte ist die Verwendung von

      [mm] \cos(2\pi x)=\frac{e^{2i \pi x}+e^{-2i \pi x}}{2}. [/mm]


LG

Bezug
                
Bezug
Integral berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:48 Mi 07.11.2012
Autor: mikexx

Aufgabe
eine andere frage noch

kann man sagen, dass das integral nicht-negativ ist? und wenn ja, wie könnte man das begründen?

vielleicht indem man sagt, dass der integrand nicht negativ ist, egal, wie man n aus den natürlichen zahlen wählt?

...

Bezug
                        
Bezug
Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:49 Mi 07.11.2012
Autor: kamaleonti


> eine andere frage noch
>  
> kann man sagen, dass das integral nicht-negativ ist? und
> wenn ja, wie könnte man das begründen?
>  
> vielleicht indem man sagt, dass der integrand nicht negativ
> ist, egal, wie man n aus den natürlichen zahlen wählt?
>  ...

Genau das ist die Begründung.

LG

Bezug
                                
Bezug
Integral berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:50 Mi 07.11.2012
Autor: mikexx

okay also dann versuche ich das integral mal mit deinem tipp auszurechnen, dankeschön

Bezug
                
Bezug
Integral berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:11 Mi 07.11.2012
Autor: mikexx

ich komme dann erstmal auf

[mm] $\frac{1}{2^{n-1}}\left(\int_{[0,1]}e^{2\pi i x}\, dx-\int_{[0,1]}e^{-2\pi i x}\, dx\right)$. [/mm]


Stimmt das bis jetzt?

Bezug
                        
Bezug
Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:20 Mi 07.11.2012
Autor: fred97


> ich komme dann erstmal auf
>  
> [mm]\frac{1}{2^{n-1}}\left(\int_{[0,1]}e^{2\pi i x}\, dx-\int_{[0,1]}e^{-2\pi i x}\, dx\right)[/mm].
>  
>
> Stimmt das bis jetzt?

Nein.

$(1+cos(2 [mm] \pi x))^n= (1+\frac{e^{2i \pi x}+e^{-2i \pi x}}{2})^n. [/mm] $



FRED


Bezug
                                
Bezug
Integral berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:26 Mi 07.11.2012
Autor: mikexx

Okay. Und das ist dann das Gleiche wie

[mm] $\left(\frac{2+e^{2i\pi x}-e^{-2 i\pi x}}{2}\right)^n=\frac{(2+e^{2 i\pi x}-e^{-2 i\pi x})^n}{2^n}$ [/mm]

Und wenn ich dann das Integral berechne, hat man doch

[mm] $\frac{1}{2^n}\int_{[0,1]}(2+e^{2 i\pi x}-e^{-2 i\pi x})^n\, [/mm] dx$

Wie kann man da jetzt weitermachen?

Bezug
                                        
Bezug
Integral berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:54 Mi 07.11.2012
Autor: notinX

Hallo,

> Okay. Und das ist dann das Gleiche wie
>  
> [mm]\left(\frac{2+e^{2i\pi x}-e^{-2 i\pi x}}{2}\right)^n=\frac{(2+e^{2 i\pi x}-e^{-2 i\pi x})^n}{2^n}[/mm]
>  
> Und wenn ich dann das Integral berechne, hat man doch
>  
> [mm]\frac{1}{2^n}\int_{[0,1]}(2+e^{2 i\pi x}-e^{-2 i\pi x})^n\, dx[/mm]
>  
> Wie kann man da jetzt weitermachen?

bist Du sicher, dass Du das von Hand ausrechnen willst? Ich habe Mathematica das mal berechnen lassen und das Ergebnis sieht nicht so aus, als ob das jemand von Hand berechnen wollte. Also wenns nicht unbedingt sein muss, würde ich mir das nochmal überlegen.

Gruß,

notinX

EDIT: Tut mir leid, das sollte eine Mitteilung, keine Antwort werden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]