Integral berechnen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei [mm] f(z):\int_{0}^{1} \frac{1}{t-z} [/mm] dt mit [mm] z\not\in [/mm] [0,1] und t [mm] \in [/mm] [0,1]
a)Berechne f(z). Hinweis: Betrachte z=x+iy und betrachte die Fälle y=0 und y [mm] \ne [/mm] 0.
b) Was passiert mit [mm] \lim_{y \to 0^+}f(z) [/mm] und [mm] \lim_{y \to 0^-} [/mm] f(z) für x [mm] \in [/mm] (0,1) und z=x+iy?
Hinweis: Untersuche Imf(z) |
ICh habe bereits:
Fall 1: z=x
Dann
[mm] f(z):\int_{0}^{1} \frac{1}{t-x}
[/mm]
Die Stammfunktion hinsichtlich t müsste ja log(t-x) sein,
also [mm] \left[ log(t-x) \right] [/mm] und da für t einmal 1 einsetzen und dann 0, aber das gibt mir: log(1-x)-log(-x) und das ist nur für x<0 definiert....
also müsste ich dann noch irgendwie den Fall rauskriegen für x>0
Ähnlich bin ich für Fall 2 vorgegangen, nur dass ich hier z statt x stehen habe...
Bei b) habe ich gehofft den Wertebereich von f(z) mit Hilfe der Stammfunktion angeben zu können. Wenn x zwischen 0 und 1 liegt, dann ist der Logarithmus dafür nicht definiert.....
Kann mir jemand weiterhelfen?
Liebe Grüße,
Herzblatt
|
|
|
|
> Sei [mm]f(z):\int_{0}^{1} \frac{1}{t-z}[/mm] dt mit [mm]z\not\in[/mm] [0,1]
> und t [mm]\in[/mm] [0,1]
>
> a)Berechne f(z). Hinweis: Betrachte z=x+iy und betrachte
> die Fälle y=0 und y [mm]\ne[/mm] 0.
> b) Was passiert mit [mm]\lim_{y \to 0^+}f(z)[/mm] und [mm]\lim_{y \to 0^-}[/mm]
> f(z) für x [mm]\in[/mm] (0,1) und z=x+iy?
> Hinweis: Untersuche Imf(z)
> ICh habe bereits:
> Fall 1: z=x
> Dann
> [mm]f(z):\int_{0}^{1} \frac{1}{t-x}[/mm]
> Die Stammfunktion
> hinsichtlich t müsste ja log(t-x) sein,
> also [mm]\left[ log(t-x) \right][/mm] und da für t einmal 1
> einsetzen und dann 0, aber das gibt mir: log(1-x)-log(-x)
> und das ist nur für x<0 definiert....
> also müsste ich dann noch irgendwie den Fall rauskriegen
> für x>0
Hallo,
Stammfunktion von [mm]\frac{1}{t-x}[/mm] ist [mm]\log|t-x|[/mm]. Damit kannst du die Fälle [mm]x<0[/mm] und [mm]x>1[/mm] abdecken ([mm]0\le x\le 1[/mm] ist ja nach Voraussetzung ausgeschlossen).
Für [mm]y\ne 0[/mm] kannst du [mm]\frac{1}{t-(x+iy)}=\frac{t-x+iy}{(t-x)^2+y^2}[/mm] schreiben und Real- und Imaginärteil getrennt integrieren.
Alternativ geht es auch mit dem komplexen Logarithmus als Stammfunktion, falls ihr das benutzen dürft.
>
> Ähnlich bin ich für Fall 2 vorgegangen, nur dass ich hier
> z statt x stehen habe...
>
> Bei b) habe ich gehofft den Wertebereich von f(z) mit Hilfe
> der Stammfunktion angeben zu können. Wenn x zwischen 0 und
> 1 liegt, dann ist der Logarithmus dafür nicht
> definiert.....
>
> Kann mir jemand weiterhelfen?
>
> Liebe Grüße,
>
> Herzblatt
>
>
>
|
|
|
|