matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisIntegral Rechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Integral Rechnung
Integral Rechnung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral Rechnung: Frage
Status: (Frage) beantwortet Status 
Datum: 20:59 Di 19.04.2005
Autor: Iceman

Hallo euch allen,

ich habe eine Frage zu einer Rechnung. Ich komme da einfach nicht weiter. Die Aufgabe lautet:

Finde die Unter -und Oberintegrale für die Funktion f(x)=x aus dem
Intervall [0,1]. Hinweis:  [mm] \summe_{k=1}^{n} [/mm] 1/2n(n+1)


Man hat bezüglich der Obersummen eigentlich ja den gleichen Fall wie bei g(x)=x. Das ist aber eine einfache Polynomfunktion und hat die Stammfunktion 1/2 * [mm] x^2, [/mm] also ist das bestimmte Integral von 0 nach 1 über g (und f) gerade [mm] 1/2 * 1^2. [/mm]

Bei der Untersumme habe ich ein Rechenproblem. Und zwar:

[mm] \summe_{k=1}^{n} (x_{k}-x_{k-1})*f(x_{k-1}) [/mm]
[mm] x_{k}-x_{k-1} [/mm] = [mm] \bruch{k}{n} [/mm] - [mm] \bruch{k-1}{n} [/mm] = [mm] \bruch{k-k+1}{n} [/mm] = [mm] \bruch{1}{n} [/mm]

[mm] f(x_{k-1}) [/mm] = [mm] x_{k-1} [/mm] = [mm] \bruch{x_{k-1}}{n} [/mm]
Jetzt eingesetzen:

[mm] \summe_{k=1}^{n} \bruch{1}{n} [/mm] * [mm] \bruch{k-1}{n} [/mm]

= [mm] \bruch{1}{n^2} [/mm] * [mm] \summe_{k=1}^{n} [/mm] k-1

Wie kann ich hier das zu ende führen? Ich habe keine ahnung. oder ist da was falsch?

Danke euch!!

        
Bezug
Integral Rechnung: Summenformel
Status: (Antwort) fertig Status 
Datum: 21:32 Di 19.04.2005
Autor: MathePower

Hallo,

> [mm]\summe_{k=1}^{n} \bruch{1}{n}[/mm] * [mm]\bruch{k-1}{n}[/mm]
>  
> = [mm]\bruch{1}{n^2}[/mm] * [mm]\summe_{k=1}^{n}[/mm] k-1
>  

das löst Du so auf:

[mm] \sum\limits_{k = 1}^n {k\; - \;1\; = \;\sum\limits_{k = 1}^n k } \; - \;\sum\limits_{k = 1}^n 1 \; = \;\frac{{n\;\left( {n\; + \;1} \right)}} {2}\; - \;n[/mm]

Gruß
MathePower

Bezug
                
Bezug
Integral Rechnung: analog für Oberintegral?
Status: (Frage) beantwortet Status 
Datum: 23:12 Mi 20.04.2005
Autor: Iceman

@MathePower

Ich glaube du hast den Faktor vor der Summe vergessen.

Also bei mir sieht die Rechnung insgesamt so aus:

U(n)=  [mm] \summe_{k=1}^{n} (x_{k}-x_{k-1})\cdot{}f(x_{k-1}) [/mm]

[mm] x_{k}-x_{k-1} [/mm] = [mm] \bruch{k}{n} [/mm] - [mm] \bruch{k-1}{n} [/mm] = [mm] \bruch{k-k+1}{n} [/mm] = [mm] \bruch{1}{n} [/mm]

[mm] f(x_{k-1}) [/mm] = [mm] x_{k-1} [/mm] = [mm] \bruch{x}{n} [/mm]
Jetzt eingesetzen:

[mm] \summe_{k=1}^{n} \bruch{1}{n} [/mm] * [mm] \bruch{k-1}{n} [/mm]

= [mm] \bruch{1}{n^2} [/mm] * [mm] \summe_{k=1}^{n} [/mm] k-1

= [mm] \bruch{1}{n^2}\summe_{k=1}^{n} [/mm] k - [mm] \summe_{k=1}^{n} [/mm] 1

= [mm] \bruch{1}{n^2} [/mm] * [mm] (\bruch{n(n+1)}{2} [/mm] - n

= [mm] \bruch{n(n+1)}{2n^2} [/mm] - [mm] \bruch{n}{n^2} [/mm]

Jetzt gekürzt...

= [mm] \bruch{n+1}{2n} [/mm] - [mm] \bruch{1}{n} [/mm]
= [mm] \bruch{n}{2n} [/mm] + [mm] \bruch{1}{2n} [/mm] - [mm] \bruch{1}{n} [/mm]
[mm] =\bruch{1}{2} [/mm] - [mm] \bruch{1}{2n} [/mm]


Grenzwert:

[mm] \limes_{n\rightarrow\infty} [/mm] U(n)
=  [mm] \limes_{n\rightarrow\infty} \bruch{1}{2} [/mm] - [mm] \bruch{1}{2n} [/mm]
= [mm] \bruch{1}{2} [/mm] - 0
=1/2

Ich habe von anderen gehört dass das Ergebnis stimmt.

Was ändert sich an der Rechnung, wenn ich genau so die Obersumme ausrechnen will? Denn bei der Obersumme kommt auch 1/2 raus.

Danke!

Bezug
                        
Bezug
Integral Rechnung: fast genau so
Status: (Antwort) fertig Status 
Datum: 02:10 Do 21.04.2005
Autor: Peter_Pein

Hallo!

Deine Umformungen waren nach meiner Meinung teilweise unnötig umständlich, aber wer das richtige Ergebnis berechnet, hat Recht [applaus].

Nun, bei der Obersumme läufts im Prinzip genau so wie eben. Der Unterschied besteht darin, dass jeder der aufzusummierenden Balken ein wenig über den Graphen von f hinaus ragt, statt ihn nur von unten zu berühren. Mit anderen Worten: hatten wir eben die linke obere Ecke jedes Balkens als Höhe auf dem Funktionsgraphen liegen, so ist es jetzt die rechte obere:

[mm] $\summe_{k=1}^{n}{(x_{k}-x_{k-1})}f(x_{k}) [/mm] = [mm] \summe_{k=1}^{n}{\bruch{k}{n^{2}}} [/mm] = [mm] \bruch{1}{n^{2}}\bruch{n(n+1)}{2}=\bruch{1}{2}+\bruch{1}{2\;n}$ [/mm]

Und wie die Namen Unter- und Obersumme vermuten lassen, nähert sich diese Folge für [mm] $n\rightarrow\infty$ [/mm] dem Grenzwert [mm] $\bruch{1}{2}$ [/mm] von oben.

Grüße,
  Peter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]