matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegral, Partialbruchzerl.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - Integral, Partialbruchzerl.
Integral, Partialbruchzerl. < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral, Partialbruchzerl.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:53 Fr 21.01.2011
Autor: dreamweaver

Aufgabe
Berechnen Sie die Stammfunktion:

[mm] \integral{\bruch{x^{2} + ax + 6}{(x-3)^{2}} dx} [/mm] für [mm] $a\in \IR [/mm] $

Hallo alle miteinander, ich komm mal wieder nicht weiter und bräuchte bitte eure Hilfe.

Da hier der Zählergrad gleich groß ist, wie der Nennergrad muss ich doch zuerst eine Polynomdivision durchführen:

[mm] $(x^{2} [/mm] + ax + [mm] 6):(x^{2}-6x+9) [/mm] = 1 + [mm] \bruch{(a+6)x-3}{x^{2}-6x+9}$ [/mm]

Also hab ich nun folgendes Integral:

[mm] \integral{(1 + \bruch{(a+6)x-3}{x^{2}-6x+9})dx} [/mm]

Jetz muss ich auch noch die Nullstelle vom Nenner suchen, da ja der Zählergrad kleiner als der Nennergrad ist:

[mm] $x^{2}-6x+9 [/mm] = 0$
[mm] x_{1,2} [/mm] = 3

Und nun muss eine Partialbruchzerlegung anstellen oder?

[mm] \bruch{(a+6)x-3}{x^{2}-6x+9} [/mm] = [mm] \bruch{A}{x-3} [/mm] + [mm] \bruch{B}{x-3} [/mm]

Dann auf gemeinsamen Nenner bringen:
$(a+6)x-3 = A(x-3) + B(x-3)$

Ausmultiplizieren und zusammenfassen:
$(a+6)x-3 = (A+B)x - 3(A + B)$

Dann hab ich die Gleichungen:
$I: (a+6) = A + B$
$II: -3 = -3A - 3B$

Gut dann löse ich die Gleichungen auf:
[mm] $I_{1}: [/mm] (a+6)-B = A$
[mm] $II_{2}: [/mm] -3 = -3((a+6)-B)-3B$
[mm] $II_{2}: [/mm] -3 = -3(a+6) + 3B - 3B$

So jetzt hebt kürzt sich aber die Variable B weg und ich hab keine Variable mehr auszurechnen... Was hab ich falsch gemacht?

Danke im Voraus!

Lg

Wie gehts jetzt weiter?




        
Bezug
Integral, Partialbruchzerl.: Antwort
Status: (Antwort) fertig Status 
Datum: 01:11 Fr 21.01.2011
Autor: reverend

Hallo dreamweaver,

es scheint schon spät zu sein. ;-)

> Berechnen Sie die Stammfunktion:
>  
> [mm]\integral{\bruch{x^{2} + ax + 6}{(x-3)^{2}} dx}[/mm] für [mm]a\in \IR[/mm]
>  
> Hallo alle miteinander, ich komm mal wieder nicht weiter
> und bräuchte bitte eure Hilfe.
>  
> Da hier der Zählergrad gleich groß ist, wie der
> Nennergrad muss ich doch zuerst eine Polynomdivision
> durchführen:

Jawoll. Ich habe sie aber nicht nachgerechnet.

> [mm](x^{2} + ax + 6):(x^{2}-6x+9) = 1 + \bruch{(a+6)x-3}{x^{2}-6x+9}[/mm]
>  
> Also hab ich nun folgendes Integral:
>  
> [mm]\integral{(1 + \bruch{(a+6)x-3}{x^{2}-6x+9})dx}[/mm]
>  
> Jetz muss ich auch noch die Nullstelle vom Nenner suchen,
> da ja der Zählergrad kleiner als der Nennergrad ist:

Hm. Die (doppelte) Nullstelle war in der Vorlage doch direkt abzulesen. Was soll sich durch die Polynomdivision daran ändern?

> [mm]x^{2}-6x+9 = 0[/mm]
>  [mm]x_{1,2}[/mm] = 3

Eben.

> Und nun muss eine Partialbruchzerlegung anstellen oder?

Eben, eben.

> [mm]\bruch{(a+6)x-3}{x^{2}-6x+9}[/mm] = [mm]\bruch{A}{x-3}[/mm] + [mm]\bruch{B}{x-3}[/mm]

Hmpf. Hier ist der Fehler. Wie sollte man da jemals A und B eindeutig bestimmen können, wenn sie auf dem gleichen Nenner herumstehen?

> Dann auf gemeinsamen Nenner bringen:
>  [mm](a+6)x-3 = A(x-3) + B(x-3)[/mm]
>  
> Ausmultiplizieren und zusammenfassen:
>  [mm](a+6)x-3 = (A+B)x - 3(A + B)[/mm]
>  
> Dann hab ich die Gleichungen:
>  [mm]I: (a+6) = A + B[/mm]
>  [mm]II: -3 = -3A - 3B[/mm]
>  
> Gut dann löse ich die Gleichungen auf:
>  [mm]I_{1}: (a+6)-B = A[/mm]
>  [mm]II_{2}: -3 = -3((a+6)-B)-3B[/mm]
>  [mm]II_{2}: -3 = -3(a+6) + 3B - 3B[/mm]
>  
> So jetzt hebt kürzt sich aber die Variable B weg und ich
> hab keine Variable mehr auszurechnen... Was hab ich falsch
> gemacht?

Dein Ansatz der PBZ für einen quadratischen Faktor im Nenner stimmt nicht. Schlag nochmal nach.

> Wie gehts jetzt weiter?

Du korrigierst Deinen Ansatz und rechnest nochmal, natürlich. :-)

Grüße
reverend


Bezug
                
Bezug
Integral, Partialbruchzerl.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:24 Fr 21.01.2011
Autor: dreamweaver


> Hallo dreamweaver,
>  
> es scheint schon spät zu sein. ;-)
>  
> > Berechnen Sie die Stammfunktion:
>  >  
> > [mm]\integral{\bruch{x^{2} + ax + 6}{(x-3)^{2}} dx}[/mm] für [mm]a\in \IR[/mm]
>  
> >  

> > Hallo alle miteinander, ich komm mal wieder nicht weiter
> > und bräuchte bitte eure Hilfe.
>  >  
> > Da hier der Zählergrad gleich groß ist, wie der
> > Nennergrad muss ich doch zuerst eine Polynomdivision
> > durchführen:
>  
> Jawoll. Ich habe sie aber nicht nachgerechnet.
>  
> > [mm](x^{2} + ax + 6):(x^{2}-6x+9) = 1 + \bruch{(a+6)x-3}{x^{2}-6x+9}[/mm]
>  
> >  

> > Also hab ich nun folgendes Integral:
>  >  
> > [mm]\integral{(1 + \bruch{(a+6)x-3}{x^{2}-6x+9})dx}[/mm]
>  >  
> > Jetz muss ich auch noch die Nullstelle vom Nenner suchen,
> > da ja der Zählergrad kleiner als der Nennergrad ist:
>  
> Hm. Die (doppelte) Nullstelle war in der Vorlage doch
> direkt abzulesen. Was soll sich durch die Polynomdivision
> daran ändern?
>  
> > [mm]x^{2}-6x+9 = 0[/mm]
>  >  [mm]x_{1,2}[/mm] = 3
>  
> Eben.
>  
> > Und nun muss eine Partialbruchzerlegung anstellen oder?
>  
> Eben, eben.
>  
> > [mm]\bruch{(a+6)x-3}{x^{2}-6x+9}[/mm] = [mm]\bruch{A}{x-3}[/mm] +
> [mm]\bruch{B}{x-3}[/mm]
>
> Hmpf. Hier ist der Fehler. Wie sollte man da jemals A und B
> eindeutig bestimmen können, wenn sie auf dem gleichen
> Nenner herumstehen?

gg da ist natürlich etwas dran ja...

Sollte dann folgendes rauskommen:
[mm] \bruch{6+a}{x-3} [/mm] + [mm] \bruch{15 + 3a}{(x-3)^{2}} [/mm]

Die Integration werd ich dann wohl noch schaffen hoffentlich!

Danke

Lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]