matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisIntegral: Kopf brennt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Integral: Kopf brennt
Integral: Kopf brennt < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Kopf brennt: Übungsaufgabe
Status: (Frage) beantwortet Status 
Datum: 21:48 Sa 17.09.2005
Autor: Matroid

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Kommen einfach nicht weiter mit diesem Integral

[mm] \integral_{}^{} \bruch{x^2-1}{x* \wurzel{x^4+3x^2+1}} [/mm] dx

Haben es mit Substitution der Wurzel, [mm] (x^2-1) [/mm] und quadratischem Ergänzen probiert. Partialbruchzerlegung scheint uns zu aufwendig.


        
Bezug
Integral: Kopf brennt: Hinweis
Status: (Antwort) fertig Status 
Datum: 22:45 Sa 17.09.2005
Autor: MathePower

Hallo Matroid,

[willkommenmr]

> Kommen einfach nicht weiter mit diesem Integral
>
> [mm]\integral_{}^{} \bruch{x^2-1}{x* \wurzel{x^4+3x^2+1}}[/mm] dx
>  
> Haben es mit Substitution der Wurzel, [mm](x^2-1)[/mm] und
> quadratischem Ergänzen probiert. Partialbruchzerlegung
> scheint uns zu aufwendig.
>  

Partialbruchzerlegung ist hier auch unangebracht.

Quadratische Ergänzung und Substitutionen führen hier zum Ziel.

Obiges Integral ist geschlossen lösbar.

Gruß
MathePower

Bezug
                
Bezug
Integral: Kopf brennt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:05 So 18.09.2005
Autor: Matroid

Danke...

Dann werden wirs wieder probieren, haben gestern sehr viel Zeit an diesem Integral verloren. Die Terme die durch unsere Substitutionen entstanden waren alles andere als übersichtlich, aber da muss man wohl irgendwie durch :( Aber für noch nen Hinweis was geanu man in einem solchen Fall substituieren sollte wären wir dankbar.


Bezug
                        
Bezug
Integral: Kopf brennt: Hinweise
Status: (Antwort) fertig Status 
Datum: 19:23 So 18.09.2005
Autor: MathePower

Hallo Matroid,

> Dann werden wirs wieder probieren, haben gestern sehr viel
> Zeit an diesem Integral verloren. Die Terme die durch
> unsere Substitutionen entstanden waren alles andere als
> übersichtlich, aber da muss man wohl irgendwie durch :(
> Aber für noch nen Hinweis was geanu man in einem solchen
> Fall substituieren sollte wären wir dankbar.

Zunächst schreibe den Ausdruck unter der Wurzel so:

[mm]\left( {x^2 \; + \;a} \right)^2 \; + \;b[/mm]

Wende dann eine der folgenden Substitutionen an:

[mm]\begin{gathered} b\; < \;0\;:\;x^2 \; + \;a\; = \;\sqrt {\left| b \right|} \;\cosh \;t \hfill \\ b\; > \;0\;:\;x^2 \; + \;a\; = \;\sqrt b \;\sinh \;t \hfill \\ \end{gathered} [/mm]

Danach kannst Du den cosh bzw sinh als Summe bzw. Differenz von e-Funktionen schreiben. Dann musst Du wieder substituieren.

Gruß

MathePower





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]