matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegral (Bogenlänge)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - Integral (Bogenlänge)
Integral (Bogenlänge) < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral (Bogenlänge): Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:09 Do 25.09.2008
Autor: nsche

Aufgabe
Beim Ermitteln einer Bogenlänge bin ich bis zu den Ausdruck gekommen:
[mm] \integral_{o}^{\pi}{ \wurzel{cosh^{2}(4t) + 1}dx} [/mm]



weder mit Additionstheoremen noch mit Bronstein bin ich weitergekommen

ratlos
Norbert

        
Bezug
Integral (Bogenlänge): Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:12 Do 25.09.2008
Autor: Herby

Hallo Norbert,

> Beim Ermitteln einer Bogenlänge bin ich bis zu den Ausdruck
> gekommen:
>  [mm]\integral_{o}^{\pi}{ \wurzel{cosh^{2}(4t) + 1}dx}[/mm]

von wo aus bist du denn gestartet?

Lg
Herby

Bezug
                
Bezug
Integral (Bogenlänge): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:11 Do 25.09.2008
Autor: nsche

Also mal von vorn
Bogen: [mm] \vec{s}(t) [/mm] = [mm] \vektor{3 cosh(2t) \\ 3 sinh(2t) \\ 6t} [/mm]
[mm] \vec{s}'(t) [/mm] = 6 [mm] \vektor{ sinh(2t) \\ cosh(2t) \\ 1} [/mm]
Bogenlänge l = [mm] \integral_{a}^{b}{\parallel \vec{s}'(t) \parallel dt} [/mm]
= 6 [mm] \integral_{0}^{\pi}{\wurzel{(\bruch {1}{2}(e^{2t}-e^{-2t}))^2 + (\bruch {1}{2}(e^{2t}+e^{-2t}))^2 + 1} dt} [/mm]
= 6 [mm] \integral_{0}^{\pi}{\wurzel{\bruch {1}{2}(e^{4t}+e^{-4t}) + 1} dt} [/mm]
= 6 [mm] \integral_{0}^{\pi}{\wurzel{cosh(4t) + 1} dt} [/mm]

opps, jetzt ist der Integrand etwas einfacher aber: ich komm noch weiter

Norbert





Bezug
                        
Bezug
Integral (Bogenlänge): Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 Do 25.09.2008
Autor: schachuzipus

Hallo Norbert,

> Also mal von vorn
>  Bogen: [mm]\vec{s}(t)[/mm] = [mm]\vektor{3 cosh(2t) \\ 3 sinh(2t) \\ 6t}[/mm]
>  
>  [mm]\vec{s}'(t)[/mm] = 6 [mm]\vektor{ sinh(2t) \\ cosh(2t) \\ 1}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

[ok]

Bevor du nun wild mit den Definitionen von $\sinh$ und $\cosh$ weiterrechnest, halte mal kurz inne und beachte den wichtigen Zusammenhang zwischen $\sinh$ und $\cosh$

Es gilt: $\blue{\cosh^2(z)-\sinh^2(z)=1}$, damit also

$6\int\limits_0^{\pi}{\sqrt{\sinh^2(2t)+\cosh^2(2t)+\blue{1}} \ dt}=6\int\limits_0^{\pi}{\sqrt{\sinh^2(2t)+\cosh^2(2t)+\blue{\cosh^2(2t)-\sinh^2(2t)}} \ dt}=6\int\limits_0^{\pi}{\sqrt{2\cosh^2(2t) \ dt}=6\cdot{}\sqrt{2}\int\limits_{0}^{\pi}{\cosh(2t) \ dt}=.....$

>  
> Bogenlänge l = [mm]\integral_{a}^{b}{\parallel \vec{s}'(t) \parallel dt}[/mm]
> = 6 [mm]\integral_{0}^{\pi}{\wurzel{(\bruch {1}{2}(e^{2t}-e^{-2t}))^2 + (\bruch {1}{2}(e^{2t}+e^{-2t}))^2 + 1} dt}[/mm] [ok]

> = 6 [mm]\integral_{0}^{\pi}{\wurzel{\bruch {1}{2}(e^{4t}+e^{-4t}) + 1} dt}[/mm]
> = 6 [mm]\integral_{0}^{\pi}{\wurzel{cosh(4t) + 1} dt}[/mm]

Das stimmt zwar alles bis hierhin, aber der obige Weg sieht mir doch bedeutend einfacher aus ...

>  
> opps, jetzt ist der Integrand etwas einfacher aber: ich
> komm noch weiter
>  
> Norbert
>  

LG

schachuzipus

>  


Bezug
                                
Bezug
Integral (Bogenlänge): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:10 Do 25.09.2008
Autor: nsche

herzlichen Dank
nsche

Bezug
        
Bezug
Integral (Bogenlänge): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:07 Do 25.09.2008
Autor: Disap

Hallo.

> Beim Ermitteln einer Bogenlänge bin ich bis zu den Ausdruck
> gekommen:
>  [mm]\integral_{o}^{\pi}{ \wurzel{cosh^{2}(4t) + 1}dx}[/mm]

Möchtest du uns damit testen? Du integrierst nach dx, hast aber einen Term in Abhängigkeit von t ;)
Hoffentlich ein Schreibfehler?
Möchtest du dazu eine Stammfunktion von uns genannt bekommen (glaube nicht, dass es die gibt) oder das Integral berechnet haben? Von Hand würde ich sagen, am Besten numerisch, ansonsten in Matlab oder Mathematica oder so eingeben und ausrechnen lassen :)


> weder mit Additionstheoremen noch mit Bronstein bin ich
> weitergekommen
>  
> ratlos
>  Norbert  

Mfg
Disap

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]