matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegral Abnahmefunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Integral Abnahmefunktion
Integral Abnahmefunktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral Abnahmefunktion: Fehler in der Aufleitung?
Status: (Frage) beantwortet Status 
Datum: 20:20 Mi 11.02.2009
Autor: jaktens

Aufgabe
Nach einem Unfall tritt ein giftiger Stoff aus, die Konzentration des Stoffes wird von der Feuerwehr stündlich gemessen (mg/min). Bestimmen sie eine geeignete Funktion m und berechnen sie die während der ersten vier bzw 24 Stunden frei gewordene Giftmenge.
1 Stunde      2 Stunden     3 Stunden     4 Stunden
8,2 mg/min    1,67 mg/min   0,34 mg/min   0,07 mg/min

Hallo erstmal und Danke im voraus!!
Ich habe folgende Vorgehensweise gewählt:

m(t)= a * [mm] b^t [/mm]

1. Berechnung der Basis:

1,67/8,20 * 100 = ca 21%
0,34/1,67 * 100 = ca 19%
Dies habe ich für alle Werte getan und aufgrund der Abweichung einen Mittelwert der drei Werte auf fünf Nachkommastellen genau gebildet.

Mit dieser Basis (0,20329) danach den Faktor a bestimmt:

8,2     = a * 0,20329 / /0,20329
40,3365 = a
Dies wiederum mit allen Werten durchgeführt und einen erneuten Mittelwert (40,55) errechnet.

m(t)= 40,55 * 0,20329 ^t

Testeinsetzungen der geg. Werte ergaben nur geringfügige Abweichungen im Nachkommastellenbereich.

Nun die Funktion aufgeleitet um erst mal die Menge für vier Stunden zu berechnen:

[mm] \integral_{0}^{4}{m(t)= 40,55 * 0,20329^t dt}= [/mm]

[mm] 40,55*\integral_{0}^{4}{M(t) dt}= \bruch{e^{t*ln 0,20329}}{ln0,20329}= [/mm]

[mm] \bruch{40,55}{ln 0,20329}* \integral_{0}^{4}{M(t) dt} =e^{t*ln 0,20329}= [/mm]

[mm] \bruch{40,55}{ln 0,20329}*(1,71*10^{-3}-1)\approx25,453 [/mm]

Nun noch die Dimensionsbetrachtung, da ich ja jetzt [mm] \bruch{mg*Stunde}{minute} [/mm] habe:
also 25,453*240 = 6108,72 mg

Nun habe ich folgendes mal überschlagen:
Die Funktion schneidet bei ca 40 die y-Achse, bei ca 240 (Minuten) die x-Achse. Wenn ich nun die Fläche dieses Dreiecks, das garantiert zu groß ist, berechne, komme ich auf 20*240=4800mg. Ein Wert, der wesentlich kleiner als meine "genaue" Fläche, jedoch garantiert viel zu groß ist.
Bei genauerer Überschlagsrechnung komme ich auf ca 1400mg...
Ich tippe auf einen Fehler in der Aufleitung, da Probeeinsetzungen in meine Funktion recht genaue Werte ergaben. Gibt´s eigentlich noch ne andere Variante zur Funktionsbestimmung?

Ein ganz anderer Ansatz wäre, eine e-Funtion über die vier Punkte zu rekonstruieren ("Steckbriefaufgabe), aber hier habe ich noch nicht mal einen Ansatz.....

Ach ja, sorry wegen des Intervallzeichens nach der Aufleitung....hab die eckigen Klammern mit oberer/unterer Grenze nicht finden können und ich habe diese Frage in keinem anderem Forum gestellt.

        
Bezug
Integral Abnahmefunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:49 Mi 11.02.2009
Autor: leduart

Hallo
Find ich gut, dass du ne Ueberschlagsrechnung zur Kontrolle machst!
dein Fehler: 1Stunde=60Min 1Stunde/1min=60 und nicht 240.
du hast die 4 ja schon im Integral berechnet.
Anderer Weg waere es gewesen alles in Min, oder alles in h zu rechnen.
[mm] etwa:m(t)=40mg/min*0,2^{t/h}=40mg/min*0.2^{t/60min} [/mm]
oder die 40mg/min in 40*60mg/h umrechnen.
Gruss leduart

Bezug
                
Bezug
Integral Abnahmefunktion: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:08 Mi 11.02.2009
Autor: jaktens

Tausend Dank!
Um die Aufgabe komplett zu machen:
Als obere Grenze 24 einsetzen, Flächeninhalt [mm] \to [/mm] 25,453 da [mm] e^{n*ln0,20329}\to0 [/mm] geht.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]