Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:50 Mo 09.09.2013 | Autor: | Paddi15 |
Aufgabe | Definiere [mm]A:={(x,y) \in \IR ^2 | x+y \leq 3, x \geq 0, y \geq 1}[/mm] und [mm]f(x,y) := (y-1)e^(^x^-^2^) ^3[/mm] (die 3 sollte eigl noch höher gestellt sein.)
|
Also mir ist klar, wie ich es ausrechnen soll und zwar:
[mm] \int_{A} {f(x,y) d(x,y)}[/mm] = [mm] \int_{0}^{2}( \int_{1}^{3-x}{{f(x,y) dy})dx[/mm][mm] \int_{0}^{2}( \int_{1}^{3-x}{{f(x,y) dy})dx[/mm] = [mm] \int_{0}^{2} e^(^x^-^2^)^3 * [ \frac{(y-1)^2}{2}]dx[/mm] (die Klammer von y= 1 bis 3-x.)
= [mm] \int_{0}^{2} e^(^x^-^2^)^3 * \frac{1}{2}((2-x)^2 - 0 ) dx[/mm] =
[mm] \frac{1}{6}\int_{0}^{2} e^(^x^-^2^)^3 * 3(x-e)^2 dx[/mm] (Wie komm ich hier auf dieses [mm] 3(x-e)^2 [/mm] ?)
= [mm] \frac{1}{6} [e^(^x^-^2^)^3][/mm] (von 0 bis 2) (Und wieso ist es hier plötzlich weg?) = [mm] \frac{1}{6}(1-e^-^8)[/mm].
Vielen Dank im Voraus.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:11 Mo 09.09.2013 | Autor: | leduart |
Hallo
> Also mir ist klar, wie ich es ausrechnen soll und zwar:
>
> [mm]\int_{A} {f(x,y) d(x,y)}[/mm] = [mm] \int_{0}^{2}( \int_{1}^{3-x}{{f(x,y) dy})dx[/mm][mm] \int_{0}^{2}( \int_{1}^{3-x}{{f(x,y) dy})dx[/mm]
> = [mm] \int_{0}^{2} e^(^x^-^2^)^3 * [ \frac{(y-1)^2}{2}]dx[/mm] (die
> Klammer von y= 1 bis 3-x.)
> = [mm] \int_{0}^{2} e^(^x^-^2^)^3 * \frac{1}{2}((2-x)^2 - 0 ) dx[/mm] =
>
> [mm]\frac{1}{6}\int_{0}^{2} e^(^x^-^2^)^3 * 3(x-e)^2 dx[/mm] (Wie
> komm ich hier auf dieses [mm]3(x-e)^2[/mm] ?)
das muss ein Druckfehler sein statt e muss da 2 stehen!
[mm] 1/2*(x-2)^2=3*1/6*(2-x)^2
[/mm]
und den Faktor [mm] 3*(x-2)^2 [/mm] bekommst du, wenn du [mm] e^{(x-2)^3} [/mm] ableitest. du kannst auch [mm] u=(x-2)^3 [/mm] substituieren.
> = [mm] \frac{1}{6} [e^(^x^-^2^)^3][/mm] (von 0 bis 2) (Und wieso
> ist es hier plötzlich weg?) = [mm] \frac{1}{6}(1-e^-^8)[/mm].
Gruss leduart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:34 Mo 09.09.2013 | Autor: | Paddi15 |
Vielen Dank.
|
|
|
|