matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisIntegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Integral
Integral < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Frage
Status: (Frage) beantwortet Status 
Datum: 10:57 Do 19.05.2005
Autor: Fabian

Hallo,

ich hab mal eine kleine Frage:

Ich soll überprüfen ob folgendes Integral existiert.

[mm] \integral_{1}^{\infty} {\bruch{1}{x*\wurzel{x-1}}*dx}=\limes_{b\rightarrow\infty}2arctan(\wurzel{b-1})=\pi [/mm]

Ich habe die Rechnung weggelassen , weil die habe ich verstanden. Ich versteh nur nicht , wenn man [mm] b\to\infty [/mm] gehen lässt , das dann [mm] \pi [/mm] am Ende rauskommt. Ist bestimmt ganz leicht.

Vielen Dank für eure Antworten

Gruß Fabian

        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 11:13 Do 19.05.2005
Autor: banachella

Hallo!

Es gilt: [mm] $\arctan{x}\to\bruch{\pi}{2}$ [/mm] mit [mm] $x\to\infty$. [/mm]
Warum das so ist, kann man sich so klar machen: Der Arcustangens ist ja die Umkehrfunktion des Tangens. Und wegen [mm] $\tan(x)=\bruch{\sin(x)}{\cos(x)}$ [/mm] gilt [mm] $\lim_{x\nearrow\frac{\pi}{2}}\tan(x)=\infty$, [/mm] weil der Sinus gegen 1 geht und der Cosinus gegen 0. Also geht der Arcustangens mit [mm] $x\to\infty$ [/mm] gegen [mm] $\bruch{\pi}{2}$... [/mm]

Hoffe, dass dir das weiterhilft...

Gruß, banachella

Bezug
                
Bezug
Integral: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:17 Do 19.05.2005
Autor: Fabian


> Hallo!
>  
> Es gilt: [mm]\arctan{x}\to\bruch{\pi}{2}[/mm] mit [mm]x\to\infty[/mm].
>  Warum das so ist, kann man sich so klar machen: Der
> Arcustangens ist ja die Umkehrfunktion des Tangens. Und
> wegen [mm]\tan(x)=\bruch{\sin(x)}{\cos(x)}[/mm] gilt
> [mm]\lim_{x\nearrow\frac{\pi}{2}}\tan(x)=\infty[/mm], weil der Sinus
> gegen 1 geht und der Cosinus gegen 0. Also geht der
> Arcustangens mit [mm]x\to\infty[/mm] gegen [mm]\bruch{\pi}{2}[/mm]...
>  
> Hoffe, dass dir das weiterhilft...

Das hilft mir bestimmt weiter. Jetzt ist es mir klar. Danke für deine Antwort!

Gruß Fabian


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]