matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Integral
Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Substitution
Status: (Frage) beantwortet Status 
Datum: 21:39 Mo 05.01.2009
Autor: makke306

Aufgabe
[mm] \integral(2x-1)(7x^2-7x-1)^{1/2} [/mm]

Ich muss diese Aufgabe mit Integration durch Substitution lösen, komme aber nicht weiter... Ich habe es mal bis hierher substituiert: [mm] -\integral(u^{1/2}/(7(x-1))du [/mm]
Stimmt das überhaupt?

        
Bezug
Integral: was hast Du gemacht?
Status: (Antwort) fertig Status 
Datum: 21:45 Mo 05.01.2009
Autor: Loddar

Hallo makke!


Es wäre auch hilfreich, wenn Du uns verraten würdest, was Du gemacht hast.

Es sieht ja nach der richtigen Substitution $u \ := \ [mm] 7*x^2-7*x-1$ [/mm] aus.

Daraus folgt nun:
$$u' \ = \ [mm] \bruch{du}{dx} [/mm] \ = \ 14*x-7 \ = \ 7*(2x-1)$$
Dies ergibt umgeformt:
$$dx \ = \ [mm] \bruch{du}{7*(2x-1)}$$ [/mm]

Eingesetzt in unser Integral:
[mm] $$\integral{(2x-1)*\left(\red{7*x^2-7*x-1}\right)^{\bruch{1}{2}} \ \blue{dx}} [/mm] \ = \ [mm] \integral{(2x-1)*\left(\red{u}\right)^{\bruch{1}{2}} \ \blue{\bruch{du}{7*(2x-1)}}} [/mm] \ = \ [mm] \bruch{1}{7}*\integral{u^{\bruch{1}{2}} \ du} [/mm] \ = \ ...$$
Und nun Du weiter ...


Gruß
Loddar


Bezug
                
Bezug
Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:56 Mo 05.01.2009
Autor: makke306

Ja genau so hab ich es gemacht... ich hatte nur einen kleinen fehler gemacht...
Also: [mm] 1/7*\integral [/mm] u^(1/2) dx= 1/7 [mm] \integral (7x^2-7x-1)^{1/2} [/mm] dx= [mm] 1/7\integral(7x-7x^{3/2}-1)= 1/7*(7x^2/2-7x^{5/2}/(5/2)-x)... [/mm]
Nun muss ich es nur noch vereinfachen oder?

Bezug
                        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 22:12 Mo 05.01.2009
Autor: Steffi21

Hallo,

[mm] \bruch{1}{7}\integral_{}^{}{u^{\bruch{1}{2}} du} [/mm]

warum setzt du jetzt schon wieder [mm] 7x^{2}-7x-1 [/mm] ein, das haben wir doch gerade substituiert, mit dem Ziel, das Integral wesentlich vereinfacht zu lösen, kümmern wir uns also um

[mm] \integral_{}^{}{u^{\bruch{1}{2}} du}= [/mm] ... +C

löse jetzt dieses Integral, beachte den Faktor [mm] \bruch{1}{7}, [/mm] dann kommt die Rücksubstitution,

Steffi

Bezug
                        
Bezug
Integral: falsch umgeformt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:32 Mo 05.01.2009
Autor: Loddar

Hallo makke!


Zudem gilt i. Allg.:  [mm] $\wurzel{a+b} [/mm]  \ \ [mm] \red{\not=} [/mm] \ \ [mm] \wurzel{a}+\wurzel{b}$ [/mm] !


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]