matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieIntegral
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integrationstheorie" - Integral
Integral < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:20 Mi 05.11.2008
Autor: Christiank87

Aufgabe
löse folgendes Integral [mm] \integral_{2}^{5}{\bruch{x+1}{\wurzel{x-1}+1} dx} [/mm]
[mm] x=t^2+1 [/mm]

ich hab für [mm] x=t^2 [/mm] eingesetzt und hab folgendes integral raus aber komme nicht so wirklich weiter also dx = 2tdt
[mm] \integral_{a}^{b}{\bruch{t^2+2}{t+1}*2t dt} [/mm] ab dem punkt nicht mehr weiter (zusätlich muss man glaube noch die grenzen verändern oder?)
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 22:34 Mi 05.11.2008
Autor: schachuzipus

Hallo Christian und herzlich [willkommenmr],

> löse folgendes Integral
> [mm]\integral_{2}^{5}{\bruch{x+1}{\wurzel{x-1}+1} dx}[/mm]
> [mm]x=t^2+1[/mm]
>  ich hab für [mm]x=t^2[/mm] eingesetzt und hab folgendes integral
> raus aber komme nicht so wirklich weiter also dx = 2tdt [ok]
>  [mm]\integral_{a}^{b}{\bruch{t^2+2}{t+1}*2t dt}[/mm] [ok] ab dem punkt
> nicht mehr weiter (zusätlich muss man glaube noch die
> grenzen verändern oder?)

Ja, oder ohne Grenzen rechnen, also das unbestimmte Integral berechnen, resubstituieren und dann die "alten" Grenzen einsetzen

Ok, du hast nun [mm] $\int{\frac{t^2+2}{t+1}\cdot{}2t \ dt}=2\int{\frac{t^3+2t}{t+1} \ dt}$ [/mm]

Mache hier erstmal eine Polynomdivision [mm] $(t^3+2t):(t+1)=...$ [/mm]

So kannst du dein zunächst schwieriges Integral in die Summe vierer puppieinfacher Integrale zerlegen ...

Vergiss aber die 2 vor dem Integral nicht ;-)


Am Ende das Resubstituieren nicht vergessen!

>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


LG

schachuzipus

Bezug
                
Bezug
Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:47 Mi 05.11.2008
Autor: Christiank87

vielen dank also habe die polynomdif. durchgeführt und komme jetzt auf [mm] t^2+2t [/mm] d.h. unser integral ist [mm] \integral_{a}^{b}{t^2+2t dt} [/mm] wenn wir das nun integrieren erhalten wir [mm] \bruch{1}{3}*t^3+t^2 [/mm] ist das richtig? und wie verhält sich das genau mit den grenzen?

Bezug
                        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 23:01 Mi 05.11.2008
Autor: schachuzipus

Hallo nochmal,

> vielen dank also habe die polynomdif. durchgeführt und
> komme jetzt auf [mm]t^2+2t[/mm] [notok]

Die PD geht doch nicht auf ...

Es ist [mm] $(t^3+2t):(t+1)=t^2-t+3-\frac{3}{t+1}$ [/mm]

d.h. unser integral ist

> [mm]\integral_{a}^{b}{t^2+2t dt}[/mm]

Nee, das ist [mm] $2\int{\left(t^2-t+3-\frac{3}{t+1}\right) \ dt}=2\int{t^2 \ dt}-2\int{t \ dt}+6\int{1 \ dt}-6\int{\frac{1}{t+1} \ dt}$ [/mm]

> wenn wir das nun integrieren
> erhalten wir [mm]\bruch{1}{3}*t^3+t^2[/mm] ist das richtig? und wie
> verhält sich das genau mit den grenzen?

Entweder du rechnest alles ohne Grenzen, dann musst du aber resubstituieren, also die Stammfunktion in t wieder in x ausdrücken

ODER du substituierst die Grenzen mit

Die Ausgangsgrenzen waren $x=2$, daraus wird mit der Substitution [mm] $x=t^2+1$ [/mm] also [mm] $2=t^2+1\Rightarrow [/mm] t=1$

Die obere war [mm] $x=5=t^2+1\Rightarrow [/mm] t=2$

Also kannst du das Integral in t ausrechnen in den Grenzen t=1 bis t=4 und musst nicht mehr resubstituieren

Du kannst es aber halten wie ein Dachdecker, ich bevorzuge Resubstitution und alte Grenzen ;-)

LG

schachuzipus


Bezug
                                
Bezug
Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:14 Mi 05.11.2008
Autor: Christiank87

stimmt habe bei der polynomdiv. nen fehler gemacht
also nach dem integrieren hat man also [mm] \bruch{2}{3}*t^3-t^2+6*t-6*ln(t+1) [/mm] wenn man jetzt resubstituiert erhält man für [mm] t=\wurzel{x-1} [/mm]
[mm] \bruch{2}{3}*\wurzel{x-1}^3-\wurzel{x-1}^2+6*\wurzel{x-1}-6*ln(\wurzel{x-1}+1) [/mm]
und dann kann man ganz normal die grenzen 2 und 5 wie am anfang benutzen richtig?

Bezug
                                        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 23:18 Mi 05.11.2008
Autor: schachuzipus

Hallo nochmal,

> stimmt habe bei der polynomdiv. nen fehler gemacht
> also nach dem integrieren hat man also
> [mm]\bruch{2}{3}*t^3-t^2+6*t-6*ln(t+1)[/mm] [ok] wenn man jetzt
> resubstituiert erhält man für [mm]t=\wurzel{x-1}[/mm]
>  
> [mm]\bruch{2}{3}*\wurzel{x-1}^3-\wurzel{x-1}^2+6*\wurzel{x-1}-6*ln(\wurzel{x-1}+1)[/mm] [ok]
>  und dann kann man ganz normal die grenzen 2 und 5 wie am
> anfang benutzen richtig?

Ja, du kannst ja mal beide Varianten probieren, setze mal die alten Grenzen x=2 und x=5 in die resubstituierte Stammfunktion ein und dann mal die substituierten Grenzen t=1 und t=2 in die Stammfunktion in der VAriable t


LG
schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]