matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSteckbriefaufgabenIntegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Steckbriefaufgaben" - Integral
Integral < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:51 So 28.09.2008
Autor: manolya

Aufgabe
f sei eine granzrationale Funktion des 3. Grades, deren Graph punktsymmetrisch zum Ursprung ist, durch den Punkt B(0;2) geht und das Quadrat A(0;0),B(2;0),C(2;-2),D(0;-2) im Verhältnis 1:5 teilt.
Bestimmen Sie die Funktionsgleichun von f.

Abend,

könnte mir vllt jmd erkläaren wie ich dass machen muss.
verstehe das nicht so ganz

DANKE IM VORAUS.

Grüße

        
Bezug
Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:56 So 28.09.2008
Autor: Zwerglein

Hi, manolya,

> f sei eine granzrationale Funktion des 3. Grades, deren
> Graph punktsymmetrisch zum Ursprung ist, durch den Punkt
> B(0;2) geht und das Quadrat A(0;0),B(2;0),C(2;-2),D(0;-2)
> im Verhältnis 1:5 teilt.
>  Bestimmen Sie die Funktionsgleichun von f.

Ich vermute mal, dass der Punkt B nicht an 2 verschiedenen Stellen liegen kann!
Ist also B(0;2) richtig oder B(2;0) ?

mfG!
Zwerglein

Bezug
                
Bezug
Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:02 So 28.09.2008
Autor: manolya

im Buch steht B(2;0) hmmm?

Bezug
        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 So 28.09.2008
Autor: schachuzipus

Hallo manolya,

ja, B=(2,0) muss es ja sein, hast du mal ne Skizze gemacht?

Deine Funktion soll ja nach Aufgabenstellung punktsymmetrisch zum Ursprung sein, da ist der Punkt $O=(0,0)$ auf jeden Fall Punkt des Graphen und [mm] $\tilde{B}=(0,2)$ [/mm] ist auf keinen Fall Punkt des Graphen.

So wie geht man nun ran, um das Biest zu berechnen?

1. Frage, die du beantworten solltest:

Wie sieht allg. die Funktionsgleichung einer ganzrationalen Funktion 3.Grades aus?

--> aufschreiben

2. Punkt: du weißt, dass die Funktion punktsymmetrisch ist, also können nur ungerade Exponenten von x auftauchen (--> warum ist das so?)

Damit hast du insgesamt 2 Unbekannte.

Du brauchst also 2 Gleichungen, um diese Unbekannten eind. berechnen zu können

3. Punkt: du weißt, dass der Punkt $B=(2,0)$ auf dem Graphen von f liegt, also gilt $f(2)=0$

Das gibt dir die erste Gleichung

Die andere bekommst du über die leztzte Aussage im Text.

Die Funktion verläuft also durch $(0,0)$ und $(2,0)$, also 2 Ecken der Quadrates und teilt den FI des Quadrates 1:5

[mm] $F_{\text{Quadrat}}= [/mm] ...$

Der Flächeninhalt, den deine Funktion mit der x-Achse einschließt, ist also [mm] $\frac{1}{5}$ [/mm] davon, wie berechnest du den? [mm] $\int\limits_{0}^{2}{f(x) \ dx}=\frac{1}{5}\cdot{}F_{\text{Quadrat}}$ [/mm]

Das gibt dir die zweite benötigte Gleichung

Nun leg mal los ;-)

LG

schachuzipus

Bezug
                
Bezug
Integral: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:29 So 28.09.2008
Autor: manolya

Soll ich für $ [mm] F_{\text{Quadrat}}= [/mm] ... $ -4 (weil es unter der x Achse ist ) oder 4 also den Betrag von -4 ???

Bezug
                        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:34 So 28.09.2008
Autor: Steffi21

Hallo, lese mal bitte meinen Hinweis, Steffi

Bezug
                
Bezug
Integral: Vorsicht!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:32 So 28.09.2008
Autor: Zwerglein

Hi, schachuzipus,

> Ecken der Quadrates und teilt den FI des Quadrates 1:5
>  
> [mm]F_{\text{Quadrat}}= ...[/mm]
>  
> Der Flächeninhalt, den deine Funktion mit der x-Achse
> einschließt, ist also [mm]\frac{1}{5}[/mm] davon, wie berechnest du
> den?

Vorsicht! Wenn eine Fläche im Verhältnis 1 : 5 geteilt wird,
dann ist der kleinere Teil [mm] 1/\red{6} [/mm] vom Ganzen, NICHT 1/5 !

mfG!
Zwerglein

Bezug
                        
Bezug
Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 So 28.09.2008
Autor: schachuzipus

Hallo Erwin,

oh wei, du hast natürlich recht, das ist mir durchgegangen.

Gut, dass du so aufmerksam liest ;-)

Danke

LG

schachuzipus

Bezug
                
Bezug
Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:32 So 28.09.2008
Autor: Steffi21

Hallo, kleiner Hinweis, das Quadrat liegt im 4. Quadranten:

[mm] \integral_{0}^{2}{ax^{3}+bx dx}= [/mm] - [mm] \bruch{1}{5} A_Q [/mm]

Steffi

Bezug
                        
Bezug
Integral: Korrektur
Status: (Frage) beantwortet Status 
Datum: 20:40 So 28.09.2008
Autor: manolya

ist dann a = [mm] -\bruch{1}{15} [/mm] ????

Bezug
                                
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:43 So 28.09.2008
Autor: Steffi21

Hallo, nein, zeige mal bitte deine Rechneschritte, dann können wir den Fehler finden, Steffi

Bezug
                                        
Bezug
Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:52 So 28.09.2008
Autor: manolya

$ [mm] \integral_{0}^{2}{ax^{3}+bx dx}= [/mm] $
[mm] =[\bruch{1}{4}*ax^{4}-0,5*bx^{2} [/mm] ]
dann habe ich 2 und 0 eingestetzt und dann b=-4a
4a-2*(-4a)= [mm] -\bruch{1}{5}*4 [/mm]
[mm] 12a=-\bruch{4}{5} [/mm]
     [mm] a=-\bruch{1}{15} [/mm]

so habe ich das gemacht !!??

Bezug
                                                
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:56 So 28.09.2008
Autor: Steffi21

Hallo, du hast einen Vorzeichenfehler:

[mm] \bruch{1}{4}ax^{4} [/mm] + [mm] \bruch{1}{2}bx^{2} [/mm]

Steffi



Bezug
                                                        
Bezug
Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:59 So 28.09.2008
Autor: manolya

dann ist es [mm] \bruch{1}{5} [/mm] oder?

Bezug
                                                                
Bezug
Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:05 So 28.09.2008
Autor: Steffi21

Hallo, so ist es, Steffi

Bezug
                                                                        
Bezug
Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:16 Mo 29.09.2008
Autor: Steffi21

Hallo, sorry, ich habe gestern auch mit [mm] \bruch{1}{5} [/mm] daneben gelegen, korrekt: [mm] a=\bruch{1}{6} [/mm] und [mm] b=-\bruch{2}{3}, [/mm] Steffi

Bezug
                                                                
Bezug
Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:19 So 28.09.2008
Autor: Zwerglein

Hi, manolya,

ích sag' ungern was zum 2.Mal, aber hier tu' ich's ausnahmsweise:
Wenn man eine Fläche im Verhältnis 1 : 5 teilt,
dann ist das kleinere Stück 1/6 vom Ganzen, nicht 1/5.

mfG!
Zwerglein

Bezug
                                                                        
Bezug
Integral: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:44 So 28.09.2008
Autor: manolya

Wie kommt man den auf 1/6 ???

Bezug
                                                                                
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 22:08 So 28.09.2008
Autor: MathePower

Hallo manolya,

> Wie kommt man den auf 1/6 ???

Gut, Du hast hier zwei Flächen.

Diese Flächen stehen im Verhältnis 1:5 zueinander.

Demnach besteht die ganze Fläche aus 1+5 = 6 Teilen, da die eine Fläche 1 Teil entspricht und die andere Fläche 5 Teilen entspricht.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]