matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Integral
Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:27 Di 26.02.2008
Autor: puldi

Mathearbeit --> Panik

erstmal hallo^^

Also:

[mm] \integral_{-6}^{0}{x * Wurzel(x+6) dx} [/mm]

wir sollen t = x + 6 setzen.

das heißt x = t - 6

und dx/dt = 1?

Wenn das soweit stimmen sollte, wie gehts dann weiter?

Bitte unterstützt mich, danke!!



        
Bezug
Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:53 Di 26.02.2008
Autor: puldi

Hi,

ich komme auf -23,5, stimmt das?

Bitte kontrolliert es sonst weiß ich nicht, ob ich es morgen kann , danke

Bezug
        
Bezug
Integral: Ansatz
Status: (Antwort) fertig Status 
Datum: 17:31 Di 26.02.2008
Autor: Lady_Eisenherz

Hey puldi!

Ich glaube man muss erst Partielle Integration durchführen  mit [mm] f'(x)=\wurzel{x+6} [/mm] und g(x)=x.
-> [mm] \integral_{-6}^{0}{x*\wurzel{x+6} dx}=\integral_{-6}^{0}{\wurzel{x+6} dx}*[x]_{-6}^{0}-\integral_{-6}^{0}{1*\wurzel{x+6} dx} [/mm]
(Hier bin ich mir nicht so sicher)

Und dann brauchst du die folgende Regel:
[mm] \integral_{a}^{b}{f(g(x))*g'(x) dx} [/mm] = [mm] \integral_{g(a)}^{g(b)}{f(z) dx} [/mm]

Die Substitution hast du schon richtig gemacht: g(x)= x + 6
f(z) = [mm] \wurzel{z} [/mm]
Die Ableitung ist dann: g'(x)= 1 (wie du schon richtig berechnet hattest)  
Nun müssen die Grenzwerte umgerechnet werden (g(-6)= 0 g(0)=6).
Dann haben wir:
[mm] \integral_{-6}^{0}{\wurzel{x+6} dx}= \integral_{-6}^{0}{f(g(x))*g'(x) dx} =\integral_{0}^{6}{f(z) dx}=\integral_{0}^{6}{\wurzel{z} dx} [/mm]

Kommst du jetzt weiter?

Gruß,
Lady Eisenherz

Bezug
                
Bezug
Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:34 Di 26.02.2008
Autor: puldi

Ich hatte dann dort stehen:

(t-6) * Wurzel(t), habe das ausmultipliziert, die stammfuznktionen gebildet und bin dann auf -23,5 gekommen, kannst du das BITTE nachrechnen? Danke!

Bezug
                        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 Di 26.02.2008
Autor: Lady_Eisenherz

Also bei mir kommt 48,99 raus... aber dein Ansatz scheint mir einsichtiger... ich glaube, dass etwas bei der partiellen Integration bei mir was falsch ist. Ich habe da ja hinterher 2 verschiedene Intervalle...

Gruß,
Lady Eisenherz

Bezug
                        
Bezug
Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:42 Di 26.02.2008
Autor: DerVogel

Kurz und knapp: Ja, du hast richtig gerechnet. Am Ende würde ich aber auf 2 oder 3 Stellen nach dem Komma runden.

Gruß,
DerVogel

Bezug
                                
Bezug
Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:47 Di 26.02.2008
Autor: puldi

Danke euch, das ist ja toll :-) Ich versuche mich jetzt och ein paar Aufgaben und frage nachher vielleicht noch EIN EINZIGES mal nach :-) Aber bis jetzt tausend dank!!

Bezug
                                        
Bezug
Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:14 Di 26.02.2008
Autor: puldi

Hallo!

Also mein letztes Integral:

[mm] \integral_{0}^{1}{x² * Wurzel(1-x) dx} [/mm]

Ich komme auf:

[mm] \integral_{1}^{0}{(1-t)² * Wurzel(t) * (-1)} [/mm]

Stimmt das? Bitte kontrolliert es für mich, danke!

t = 1-x

x = 1- t

dx/dt = -1

dx = -dt

Bitte helft!

Bezug
                                                
Bezug
Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:42 Di 26.02.2008
Autor: puldi

Hallo!

Bitte helft mir, ich bin echt am Verzweifeln! Kann es sein, dass die Lösung - 4,05 ist?

Danke euch!

Bezug
                                                
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 Di 26.02.2008
Autor: leduart

Hallo poldi
Dein Integral ist richtig, Zahlenergebnis hab ich anders. Schreib doch lieber erst dein Ergebnis für das Integral allgemein auf, dann wissen wir obs nur ein Rechenfehler beim Einsetzen ist, oder schon beim Integrieren.
Gruss leduart

Bezug
                                                        
Bezug
Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:13 Di 26.02.2008
Autor: puldi

Hallo,

danke, dass ihr euch so um mich bemüht.

Also:

[mm] \integral_{0}^{1}{(Wurzel(1-x) x² dx} [/mm]

Nach einsetzen erhalte ich:

[mm] \integral_{1}^{0}{(1-t)² * Wurzel(t) * (-1)dx} [/mm]

Jetzt wollte ich die Grenzen umdrehen und das (-1) wegfallen lasen:

[mm] \integral_{0}^{1}{(1-t)² * Wurzel(t) dx} [/mm]

Dann habe ich versucht auszumultiplizieren:

(1 - 2t + t²) * Wurzel(t) = Wurzel(t) - 2*Wurze(t) * t + t² * Wurzel(t)

=

t^(0,5) - 2*t^(1,5) + t^(2,5)

Stimmt das soweit? Wenn ja, rechne ic weiter vor, wenn nein, bitte verbessert mich, danke!


Bezug
                                                                
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:22 Di 26.02.2008
Autor: leduart

soweit alles richtig
Gruss leduart

Bezug
                                                                        
Bezug
Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:26 Di 26.02.2008
Autor: puldi

Schön :-)

Dann gehts jetzt mal weite4r...

t^(0,5) - 2*t^(1,5) + t^(2,5)

Dafür muss ich jetzt eine Stammfunktion bilden. Kann ich das noch i-wie zusammenfassen?

Ich würde es so machend er Einfachheit halber:

[2/3 t ^(3/2) - 1/5 ^(5/2) + 2/7 t^(7/2)

Sowerit noch richtig?

Danke

Bezug
                                                                                
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:31 Di 26.02.2008
Autor: leduart

Hallo
> Schön :-)
>  
> Dann gehts jetzt mal weite4r...
>  
> t^(0,5) - 2*t^(1,5) + t^(2,5)
>
> Dafür muss ich jetzt eine Stammfunktion bilden. Kann ich
> das noch i-wie zusammenfassen?
>  
> Ich würde es so machend er Einfachheit halber:
>  
> [2/3 t ^(3/2) - 1/5 ^(5/2) + 2/7 t^(7/2)

leider ein Fehler, du machst das eins zu schnell! in der Mitte 2*2/5=4/5
also  
[2/3 t ^(3/2) - 4/5 ^(5/2) + 2/7 t^(7/2)
Dann richtig.
Gruss leduart

Bezug
                                                                                        
Bezug
Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:35 Di 26.02.2008
Autor: puldi

Lösung wäre dann:

2/3 - 4/5 + 2/7

Weil ich setze ja 1 ein und bei 0 kommt eh 0 raus. Stimmt das so *hoff*? Und auf jeden Fasll tausend dank!!

Bezug
                                                                                                
Bezug
Integral: ok
Status: (Antwort) fertig Status 
Datum: 19:54 Di 26.02.2008
Autor: leduart

Hallo
Alles richtig! und bei deiner Arbeit: lieber etwas langsamer, dafür ohne Leichtsinnsfehler -wie eben- Viel Erfolg!
Gruss leduart

Bezug
                                                                                                        
Bezug
Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:05 Di 26.02.2008
Autor: puldi

Danke :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]