matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegral
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Integral
Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:24 Di 15.01.2008
Autor: Luke1986

Aufgabe
[mm] \int_{}^{} \bruch{x^2*arsinh(x)}{\wurzel{x^2+1}}dx [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Hallo! Bei diesem INtegral komme ich leider nicht auf den richtigen Lösungsweg. Das Integral hat die Form [mm] {[x,\wurzel{x^2+1}]} [/mm]  dieses wäre zu integrieren mit x=sinh(t)
[mm] \Rightarrow \bruch{dx}{dt} [/mm] = cosh(t) [mm] \gdw [/mm] dx=dt cosh(t) aber dann komme ich nicht weiter...

Vllt is das auch einfach eine völlig falsche idee! ich hoffe auf Lösungsideen! vielen dank Lukas

        
Bezug
Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:22 Di 15.01.2008
Autor: Tea

Hallo!

Meinst du mit arsinh(x) die Area oder die Arcus- Funktion?

Viele Grüße

Bezug
                
Bezug
Integral: Idee ?!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:37 Di 15.01.2008
Autor: Tea

Vielleicht hilft ja

$f(x)=arsinh(x)$
[mm] $f'(x)=(1+x^2)^{-(\bruch{1}{2})}$ [/mm] .

Bezug
        
Bezug
Integral: Tipp
Status: (Antwort) fertig Status 
Datum: 14:43 Di 15.01.2008
Autor: Roadrunner

Hallo Luke!


Mit der Substitution $x \ := \ [mm] \sinh(t)$ [/mm] bist Du absolut auf dem richtigen Weg.

Verwende noch folgende Beziehungen:
[mm] $$\cosh^2(t)-\sinh^2(t) [/mm] \ = \ 1$$
[mm] $$\text{ar}\sinh\left[\sinh(t)\right] [/mm] \ = \ t$$
Für das entstehende Integral ist dann partielle Integration fällig (evtl. auch 2-mal).


Gruß vom
Roadrunner


Bezug
                
Bezug
Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:25 Di 15.01.2008
Autor: Luke1986

supi ja das hat jetzt auch funktioniert! vielen dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]