matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Integral
Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Korrektur und Idee
Status: (Frage) beantwortet Status 
Datum: 13:05 So 18.01.2015
Autor: Schlumpf004

Aufgabe
[mm] \integral_{-1}^{0}{(6x^{2} + \bruch{3}{x-1} )dx} [/mm]


Hallo,

Ich habe einen anfang gemacht...

[mm] \integral_{-1}^{0}{(6x^{2} + \bruch{3}{x-1}) dx} [/mm]
[mm] =2x^{3}+ [/mm] 3 ln(x-1)
raus...
INFO: + 3 ln(x-1) steht nicht im Exponenten , da klappt bei mir i-was nicht !

Wenn ich die Grenzwerte eingebe mit minus ln kommt "MATH ERROR".
Wie sollte ich das im TR eingeben? Oder ist überhaupt alles so richtig?


        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 13:45 So 18.01.2015
Autor: MathePower

Hallo Schlumpf004,

> [mm]\integral_{-1}^{0}{(6x^{2} + \bruch{3}{x-1} )dx}[/mm]
>  
> Hallo,
>  
> Ich habe einen anfang gemacht...
>  
> [mm]\integral_{-1}^{0}{(6x^{2} + \bruch{3}{x-1}) dx}[/mm]
> [mm]=2x^{3}+[/mm] 3 ln(x-1)
>  raus...


Dies gilt nur für x > 1. [ok]

Soll dies für alle [mm]x \not= 1[/mm] gelten,
dann müssen hier Betragsstriche stehen:

[mm]=2x^{3}+3 \ln\blue{\vmat{x-1}}[/mm]


>  INFO: + 3 ln(x-1) steht nicht im Exponenten , da klappt
> bei mir i-was nicht !
>  
> Wenn ich die Grenzwerte eingebe mit minus ln kommt "MATH
> ERROR".
>  Wie sollte ich das im TR eingeben? Oder ist überhaupt
> alles so richtig?
>  


Gruss
MathePower

Bezug
                
Bezug
Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:53 So 18.01.2015
Autor: Schlumpf004

Das mit betrag geht aber nicht bei 0? ln(0) = ERROR ?

Bezug
                        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 14:03 So 18.01.2015
Autor: M.Rex


> Das mit betrag geht aber nicht bei 0? ln(0) = ERROR ?

Also musst du dir dann in der Tat mal Gedanken über [mm] \lim\limits_{x\to0}\ln(x) [/mm] machen . Stell deinen Taschenrechner mal ganz weit weg, im Studium solltest du diesen fast nicht benötigen.

Marius

Bezug
                        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 14:06 So 18.01.2015
Autor: fred97


> Das mit betrag geht aber nicht bei 0? ln(0) = ERROR ?  


In [mm] \ln\blue{\vmat{x-1}} [/mm] setzt Du einmal 0 ein und dann -1.

ln(0) kommt also nicht vor !

FRED



Bezug
                                
Bezug
Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:09 So 18.01.2015
Autor: Schlumpf004

Danke an alle :)

Bezug
        
Bezug
Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:48 So 18.01.2015
Autor: Schlumpf004

Aufgabe
Für [mm] x\le [/mm] 0 begrenzen die Funktionen f(x)= [mm] x^{3} [/mm]   g(x)= [mm] \bruch{1}{x} [/mm]   h(x)= 4x im 3. Quadranten zwei verschiedene Flächen. Skizzieren Sie den Sachverhalt und berechnen Sie wahlweise den Inhalt einer dieser Flächen.


Ich habe hier mit einer Skizze angefangen...

Dann: [mm] \integral_{-1}^{0}{(x^{3}-1/x) dx} [/mm] + [mm] \integral_{0}^{0,5}{(4x-1/x) dx} [/mm]
= [mm] (\bruch{1}{4}x^{4} [/mm] - ln(x)) + [mm] (2x^{2}-ln(x)) [/mm]

Wenn ich 0 oder -1 einsetze wieder ERROR :/ Was mache ich falsch??

Bezug
                
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 14:00 So 18.01.2015
Autor: M.Rex

Hallo

> Für [mm]x\le[/mm] 0 begrenzen die Funktionen f(x)= [mm]x^{3}[/mm] g(x)=
> [mm]\bruch{1}{x}[/mm] h(x)= 4x im 3. Quadranten zwei verschiedene
> Flächen. Skizzieren Sie den Sachverhalt und berechnen Sie
> wahlweise den Inhalt einer dieser Flächen.

>

> Ich habe hier mit einer Skizze angefangen...

>

> Dann: [mm]\integral_{-1}^{0}{(x^{3}-1/x) dx}[/mm] +
> [mm]\integral_{0}^{0,5}{(4x-1/x) dx}[/mm]
> = [mm](\bruch{1}{4}x^{4}[/mm] -
> ln(x)) + [mm](2x^{2}-ln(x))[/mm]

Es fehlen wieder die Betragsstriche, denn ln(x) ist nur für x>0 definiert.

Eine Stammfunktion zu [mm] f(x)=\frac{1}{x} [/mm] ist [mm] F(x)=\ln(|x|). [/mm]
Da [mm] f(x)=\frac{1}{x} [/mm] für x=0 schon nicht definiert ist, brauchst du F(x) auch nicht weiter einschränken, auch diese ist fordert [mm] x\ne0 [/mm]

>

> Wenn ich 0 oder -1 einsetze wieder ERROR :/ Was mache ich
> falsch??

Vielleicht solltest du mal selber rechnen, da ln(0) nicht definiert ist, bestimme die Grenzwerte mal "händisch", also

[mm] \int\limits_{-1}^{0}x^{3}-\frac{1}{x}dx [/mm]
[mm] =\lim\limits_{k\to0}\int\limits_{-1}^{k}x^{3}-\frac{1}{x}dx [/mm]
[mm] =\lim\limits_{k\to0}\left[\frac{x^{4}}{4}-\ln(|x|)\right]_{-1}^{k} [/mm]
[mm] =\lim\limits_{k\to0}\left[\left(\frac{k^{4}}{4}-\ln(|k|)\right)-\left(\frac{(-1)^{4}}{4}-\ln(|(-1)|)\right)\right] [/mm]
[mm] =\ldots [/mm]

So auch das andere Integral.

MfG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]