matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - Integral
Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Übung
Status: (Frage) beantwortet Status 
Datum: 16:16 Mo 27.01.2014
Autor: capri

Aufgabe
Bestimmen Sie die unbestimmten Integrale.

[mm] \integral \bruch{1}{1+e^x} [/mm]

Hallo habe mal ne kurze Frage zu dieser Aufgabe.
Wenn ich t = [mm] 1+e^x [/mm] substituiere.
dann ist [mm] \bruch{dt}{dx} [/mm] = [mm] e^x [/mm] dann ist [mm] dx=\bruch{dt}{e^x} [/mm]

dann habe ich: [mm] \bruch{1}{t} [/mm] * [mm] \bruch{dt}{e^x} [/mm]

aber da t= [mm] 1+e^x [/mm] ist, ist [mm] e^x=t-1 [/mm] daraus folgt, dass

[mm] \bruch{1}{t} [/mm] * [mm] \bruch{dt}{(t-1)} [/mm] stimmt das bis hierhin?

LG


        
Bezug
Integral: soweit richtig
Status: (Antwort) fertig Status 
Datum: 16:18 Mo 27.01.2014
Autor: Roadrunner

Hallo capri!


> [mm]\bruch{1}{t}[/mm] * [mm]\bruch{dt}{(t-1)}[/mm]
> stimmt das bis hierhin?

[daumenhoch] Nun weiter mit MBPArtialbruchzerlegung.


Gruß vom
Roadrunner

Bezug
                
Bezug
Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:38 Mo 27.01.2014
Autor: capri

hallo habe die PBZ gemacht und habe:

[mm] \integral \bruch{-1}{t}+\bruch{1}{t-1} [/mm] =

-log(t)+log(1-t)+C

[mm] -log(1+e^x)+log() [/mm]

ja beim zweiten weiß ich den log nicht falls es bis hierhin richtig ist

[mm] log(1-1+e^x)? [/mm] also [mm] log(e^x)? [/mm]

Bezug
                        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 Mo 27.01.2014
Autor: DieAcht

Hallo,


> hallo habe die PBZ gemacht und habe:
>  
> [mm]\integral \bruch{-1}{t}+\bruch{1}{t-1}[/mm] =

Deine Partialbruchzerlegung ist richtig, aber du meinst folgendes Integral:

      [mm] \integral -\bruch{1}{t}+\bruch{1}{t-1}dx [/mm]

> -log(t)+log(1-t)+C

Nein, es gilt:

      [mm] \integral \bruch{1}{t-1}dx=\log(t-1)+C [/mm]

> [mm]-log(1+e^x)+log()[/mm]
>  
> ja beim zweiten weiß ich den log nicht falls es bis
> hierhin richtig ist
>  
> [mm]log(1-1+e^x)?[/mm] also [mm]log(e^x)?[/mm]  

Obwohl du oben das falsche Integral berechnest hast,
hast du durch einen erneuten Fehler es richtig gemacht :-)

Es gilt:

      $a-(b+c)=a-b-c$ für alle [mm] a,b,c\in\IR [/mm]

Zu deiner Aufgabe:

      [mm] -\log(t)+\log(t-1) [/mm]

      [mm] \Rightarrow -\log(1+e^x)+\log(1+e^x-1)=-\log(1+e^x)+\log(e^x)=x-\log(1+e^x) [/mm]

      [mm] \Rightarrow \integral{\frac{1}{1+e^x} dx}=x-\log(1+e^x)+C [/mm]


Gruß
DieAcht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]