matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieIntegral-Berechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integrationstheorie" - Integral-Berechnung
Integral-Berechnung < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral-Berechnung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 00:31 Do 24.01.2008
Autor: Dan-T

Aufgabe
Berechnen Sie folgende Integrale:

a) [mm] \integral_{}^{}{(xlnx) dx} [/mm]

b) [mm] \integral_{}^{}{(\bruch{3x^2}{\wurzel{2+2x^3}}) dx} [/mm]

...Integralrechnung hatte ich vor 2Jahren mal in der Schule, tja aber bei diesen beiden Aufgaben bin ich nun gescheitert! Wäre schön wenn mir jemand mal den Weg bis zur Lösung geben könnte...


Vielen Dank im Voraus!

        
Bezug
Integral-Berechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:43 Do 24.01.2008
Autor: schachuzipus

Hallo Dan-T,

das erste Integral kannst du mit partieller Integration lösen.

Das zweite lässt dich mit der Substitution [mm] $u:=2+2x^3$ [/mm] ganz gut verarzten


Schau mal, wie weit du nun kommst und poste dann mal deine Versuche/Lösungen...

LG

schachuzipus

Bezug
                
Bezug
Integral-Berechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:13 So 27.01.2008
Autor: Dan-T

Okay habe mich heute mal damit befasst:

[mm] \integral_{}^{}f(x)g'(x)dx=f(x)g(x)-\integral_{}^{}f'(x)g(x)dx [/mm]

f(x)=x       [mm] g(x)=\bruch{1}{x} [/mm]
f'(x)=1      g'(x)=lnx

[mm] \integral_{}^{}{(xlnx) dx} [/mm] $ = [mm] (x*\bruch{1}{x})-\integral_{}^{}{1*\bruch{1}{x} dx} [/mm]
= 1- ln|x|+c

...ist hoffentlich so richtig.

Bei der 2.Aufgabe kann ich mir zwar vorstellen wie das mit der Substition gehen könnte, aber mich irritiert nach wie vor der Bruch...kA

Bezug
                        
Bezug
Integral-Berechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 So 27.01.2008
Autor: abakus

Aus [mm] u=2+2x^3 [/mm] folgt [mm] \bruch{du}{dx}=6x^2 [/mm] und damit auch [mm] dx=\bruch{du}{6x^2}. [/mm]
Du substituierst ja nicht nur [mm] 2+2x^3 [/mm]  , sondern auch dx.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]