matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikInspektionsparadox
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Inspektionsparadox
Inspektionsparadox < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inspektionsparadox: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:43 Do 11.01.2007
Autor: Moe007

Aufgabe
Seien [mm] (L_{i})_{i \ge 1} [/mm] unabh., identisch verteilte, nichtnegative Zufallsvariablen mit 0 < [mm] E(L_{i}) [/mm] < [mm] \infty, [/mm] z.B. sei [mm] L_{i} [/mm] die Lebensdauer der i-ten Glühbirne. Für s > 0 sei [mm] L_{(s)} [/mm] die Lebensdauer der Glühbirne, die zur Zeit s brennt, also [mm] L_{(s)} [/mm] = [mm] L_{i} [/mm] für [mm] \summe_{k=1}^{i-1} L_{k}\le [/mm] s < [mm] \summe_{k=1}^{i} L_{k}. [/mm] Für t > 0 sei [mm] N_{t} [/mm] = max {N [mm] \ge [/mm] 1: [mm] \summe_{i=1}^{N} L_{i} \le [/mm] t} die Anzahl der bis zur Zeit t verbrauchten Glühbirnen.
Sei ferner [mm] M_{t} [/mm] = [mm] \bruch{1}{t} \integral_{0}^{t}{L_{(s)} ds} [/mm] die mittlere Lebensdauer der Glühbirne, die von einem zufälligen in [0,t] ankommenden Inspekteur untersucht wird.
Zeige mit Hilfe des starken Gesetzes der großen Zahlen:
[mm] \limes_{t\rightarrow\infty}M_{t} [/mm] = [mm] \bruch{E(L^{2}_{1})}{L_{1}} [/mm] fast sicher.

Hallo,
ich hoffe, es kann mir jemand bei der Aufgabe helfen. Ich komm leider nicht sehr weit, da ich nicht genau weiß, wie ich das alles zeigen soll. Das wäre sehr nett!

In der VL wurde uns der Tipp gegeben, folgendes zu betrachten:
[mm] \integral_{0}^{t}{L_{(s)} ds} \approx \summe_{i=1}^{N_{t}} L^{2}_{i} [/mm] und das starke Gesetz der großen zahlen zweimal zu verwenden.

Diese Gleichung habe ich durch [mm] N_{t} [/mm] geteilt, um das  starke Gesetz der großen Zahlen zu verwenden.
[mm] \bruch{1}{N_{t}} \integral_{0}^{t}{L_{(s)} ds} \approx \bruch{1}{N_{t}} \summe_{i=1}^{N_{t}} L^{2}_{i} \to E(L^{2}_{1}) [/mm] nach dem starken Gesetz d. g. Zahlen oder?

Nun komm ich leider nicht mehr weiter.
Wie kann man das weiter rechnen, um die Beh. zu bekommen?

Ich hoffe, dass mir jemand helfen kann.

Danke und viele Grüße,

Moe

        
Bezug
Inspektionsparadox: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Mi 17.01.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]