Inspektionsparadox < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 22:43 Do 11.01.2007 | Autor: | Moe007 |
Aufgabe | Seien [mm] (L_{i})_{i \ge 1} [/mm] unabh., identisch verteilte, nichtnegative Zufallsvariablen mit 0 < [mm] E(L_{i}) [/mm] < [mm] \infty, [/mm] z.B. sei [mm] L_{i} [/mm] die Lebensdauer der i-ten Glühbirne. Für s > 0 sei [mm] L_{(s)} [/mm] die Lebensdauer der Glühbirne, die zur Zeit s brennt, also [mm] L_{(s)} [/mm] = [mm] L_{i} [/mm] für [mm] \summe_{k=1}^{i-1} L_{k}\le [/mm] s < [mm] \summe_{k=1}^{i} L_{k}. [/mm] Für t > 0 sei [mm] N_{t} [/mm] = max {N [mm] \ge [/mm] 1: [mm] \summe_{i=1}^{N} L_{i} \le [/mm] t} die Anzahl der bis zur Zeit t verbrauchten Glühbirnen.
Sei ferner [mm] M_{t} [/mm] = [mm] \bruch{1}{t} \integral_{0}^{t}{L_{(s)} ds} [/mm] die mittlere Lebensdauer der Glühbirne, die von einem zufälligen in [0,t] ankommenden Inspekteur untersucht wird.
Zeige mit Hilfe des starken Gesetzes der großen Zahlen:
[mm] \limes_{t\rightarrow\infty}M_{t} [/mm] = [mm] \bruch{E(L^{2}_{1})}{L_{1}} [/mm] fast sicher. |
Hallo,
ich hoffe, es kann mir jemand bei der Aufgabe helfen. Ich komm leider nicht sehr weit, da ich nicht genau weiß, wie ich das alles zeigen soll. Das wäre sehr nett!
In der VL wurde uns der Tipp gegeben, folgendes zu betrachten:
[mm] \integral_{0}^{t}{L_{(s)} ds} \approx \summe_{i=1}^{N_{t}} L^{2}_{i} [/mm] und das starke Gesetz der großen zahlen zweimal zu verwenden.
Diese Gleichung habe ich durch [mm] N_{t} [/mm] geteilt, um das starke Gesetz der großen Zahlen zu verwenden.
[mm] \bruch{1}{N_{t}} \integral_{0}^{t}{L_{(s)} ds} \approx \bruch{1}{N_{t}} \summe_{i=1}^{N_{t}} L^{2}_{i} \to E(L^{2}_{1}) [/mm] nach dem starken Gesetz d. g. Zahlen oder?
Nun komm ich leider nicht mehr weiter.
Wie kann man das weiter rechnen, um die Beh. zu bekommen?
Ich hoffe, dass mir jemand helfen kann.
Danke und viele Grüße,
Moe
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:20 Mi 17.01.2007 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|