matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisInjektivität im Komplexen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - Injektivität im Komplexen
Injektivität im Komplexen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektivität im Komplexen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:44 Di 26.05.2015
Autor: Trikolon

Aufgabe
Seien G [mm] \subseteq \IC [/mm] ein konvexes Gebiet und F: [mm] G-->\IC [/mm] holomorph mit stetiger Ableitung F'. Zeige: Ist ReF' nullstellenfrei, so ist F Injektiv.
Genügt es zu verlangen, dass F' nullstellenfrei ist?

Hallo,

den eigentlichen Beweis habe ich gemeistert ;-) Allerdings fehlt mir ein passendes Gegenbeispiel zur der Frage, ob es genügt, dass F' nullstellenfrei ist... Könntet ihr mir diesbezüglich bitte auf die Sprünge helfen?

Danke!

        
Bezug
Injektivität im Komplexen: Antwort
Status: (Antwort) fertig Status 
Datum: 05:44 Mi 27.05.2015
Autor: fred97


> Seien G [mm]\subseteq \IC[/mm] ein konvexes Gebiet und F: [mm]G-->\IC[/mm]
> holomorph mit stetiger Ableitung F'.


Hä ? Die Ableitung einer holomorphen Funktion ist immer stetig.





> Zeige: Ist ReF'
> nullstellenfrei, so ist F Injektiv.
> Genügt es zu verlangen, dass F' nullstellenfrei ist?
>  Hallo,
>  
> den eigentlichen Beweis habe ich gemeistert ;-) Allerdings
> fehlt mir ein passendes Gegenbeispiel zur der Frage, ob es
> genügt, dass F' nullstellenfrei ist... Könntet ihr mir
> diesbezüglich bitte auf die Sprünge helfen?


Spring mal auf die Expo.

FRED

>  
> Danke!


Bezug
                
Bezug
Injektivität im Komplexen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:39 Mi 27.05.2015
Autor: Trikolon


> > Seien G [mm]\subseteq \IC[/mm] ein konvexes Gebiet und F: [mm]G-->\IC[/mm]
> > holomorph mit stetiger Ableitung F'.
>
>
> Hä ? Die Ableitung einer holomorphen Funktion ist immer
> stetig.
>  
>
> so lautet aber in der Tat die Aufgabenstellung...
>
>
> > Zeige: Ist ReF'
> > nullstellenfrei, so ist F Injektiv.
> > Genügt es zu verlangen, dass F' nullstellenfrei ist?
>  >  Hallo,
>  >  
> > den eigentlichen Beweis habe ich gemeistert ;-) Allerdings
> > fehlt mir ein passendes Gegenbeispiel zur der Frage, ob es
> > genügt, dass F' nullstellenfrei ist... Könntet ihr mir
> > diesbezüglich bitte auf die Sprünge helfen?
>  
>
> Spring mal auf die Expo.

>

Also f(z)=exp(z)=exp(x)*(cosy+isiny)=f'(z) ist nullstellenfrei. Aber doch auch injektiv, oder?

> FRED
>  >  
> > Danke!
>  


Bezug
                        
Bezug
Injektivität im Komplexen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:14 Mi 27.05.2015
Autor: fred97


> > > Seien G [mm]\subseteq \IC[/mm] ein konvexes Gebiet und F: [mm]G-->\IC[/mm]
> > > holomorph mit stetiger Ableitung F'.
> >
> >
> > Hä ? Die Ableitung einer holomorphen Funktion ist immer
> > stetig.
>  >  
> >
> > so lautet aber in der Tat die Aufgabenstellung...
>  >

> >
> > > Zeige: Ist ReF'
> > > nullstellenfrei, so ist F Injektiv.
> > > Genügt es zu verlangen, dass F' nullstellenfrei ist?
>  >  >  Hallo,
>  >  >  
> > > den eigentlichen Beweis habe ich gemeistert ;-) Allerdings
> > > fehlt mir ein passendes Gegenbeispiel zur der Frage, ob es
> > > genügt, dass F' nullstellenfrei ist... Könntet ihr mir
> > > diesbezüglich bitte auf die Sprünge helfen?
>  >  
> >
> > Spring mal auf die Expo.
>  >
>  
> Also f(z)=exp(z)=exp(x)*(cosy+isiny)=f'(z) ist
> nullstellenfrei. Aber doch auch injektiv, oder?

Nein. $exp(z+2k [mm] \pi [/mm] i)=exp(z)$  für alle $z [mm] \in \IC$ [/mm] und alle $k [mm] \in \IZ.$ [/mm]

FRED

>  
> > FRED
>  >  >  
> > > Danke!
> >  

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]