matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikInjektivität beweisen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Diskrete Mathematik" - Injektivität beweisen
Injektivität beweisen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektivität beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:12 So 28.06.2015
Autor: pc_doctor

Aufgabe
Gegeben sind die Funktionen f,g: [mm] \IN [/mm] -> [mm] \IN [/mm] x [mm] \IN [/mm] und h,j: [mm] \IN [/mm] x [mm] \IN [/mm] -> [mm] \IN [/mm] durch
... h(x,y) = x+y , g(x) = ( [mm] \wurzel{x}, [/mm] x - [mm] \wurzel{x}) [/mm]
Untersuche die Injektivität von gh


Hallo,
ich soll die Injektivität von gh untersuchen und habe irgendwie ein Brett vor dem Kopf.
gh heißt für mich g [mm] \circ [/mm] h , also g(h(x,y)).

Normalerweise würde ich jetzt einfach g(h(x,y))= [mm] \wurzel{x+y}, [/mm] x+y - [mm] \wurzel{x+y} [/mm] schreiben , aber das scheint mir falsch.

Bin dankbar für einen Denkanstoß. Liebe Grüße.

        
Bezug
Injektivität beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:28 So 28.06.2015
Autor: fred97


> Gegeben sind die Funktionen f,g: [mm]\IN[/mm] -> [mm]\IN[/mm] x [mm]\IN[/mm] und h,j:
> [mm]\IN[/mm] x [mm]\IN[/mm] -> [mm]\IN[/mm] durch
>  ... h(x,y) = x+y , g(x) = ( [mm]\wurzel{x},[/mm] x - [mm]\wurzel{x})[/mm]
>  Untersuche die Injektivität von gh
>  
> Hallo,
>  ich soll die Injektivität von gh untersuchen und habe
> irgendwie ein Brett vor dem Kopf.
>  gh heißt für mich g [mm]\circ[/mm] h , also g(h(x,y)).
>  
> Normalerweise würde ich jetzt einfach g(h(x,y))=
> [mm]\wurzel{x+y},[/mm] x+y - [mm]\wurzel{x+y}[/mm] schreiben , aber das
> scheint mir falsch.

Wieso ? Ist doch O.K.

FRED

>  
> Bin dankbar für einen Denkanstoß. Liebe Grüße.  


Bezug
        
Bezug
Injektivität beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:38 So 28.06.2015
Autor: Marcel

Hallo,

> Gegeben sind die Funktionen f,g: [mm]\IN[/mm] -> [mm]\IN[/mm] x [mm]\IN[/mm] und h,j:
> [mm]\IN[/mm] x [mm]\IN[/mm] -> [mm]\IN[/mm] durch
>  ... h(x,y) = x+y , g(x) = ( [mm]\wurzel{x},[/mm] x - [mm]\wurzel{x})[/mm]
>  Untersuche die Injektivität von gh
>  
> Hallo,
>  ich soll die Injektivität von gh untersuchen und habe
> irgendwie ein Brett vor dem Kopf.
>  gh heißt für mich g [mm]\circ[/mm] h , also g(h(x,y)).
>  
> Normalerweise würde ich jetzt einfach g(h(x,y))=
> [mm]\wurzel{x+y},[/mm] x+y - [mm]\wurzel{x+y}[/mm] schreiben , aber das
> scheint mir falsch.

da fehlen nur Klammern (nur die roten am Ende sind wichtig):

    $(g [mm] \circ h)(x,y)=g(h(x,y))=g(x+y)=\red{(}\sqrt{(x+y)},\,(x+y)-\sqrt{(x+y)}\red{)}$ [/mm]

Tipp zur Aufgabe: $h$ ist nicht injektiv, so ist etwa

    [mm] $\underbrace{h(1,2)}_{=h(\;(1,2)\;)}=3=\underbrace{h(2,1)}_{=h(\;(2,1)\;)}\,.$ [/mm]

(Allgemein $h(a,b)=h(b,a)$ auch für $a,b [mm] \in \red{\,\IN}$ [/mm] mit $a [mm] \neq [/mm] b$; beachte auch,
dass [mm] $h\,$ [/mm] nicht auf [mm] $\IZ \times \IZ$ [/mm] definiert wurde!)

Was bedeutet das für $g [mm] \circ [/mm] h$? (Werte mal an den gleichen Stellen aus!)

Gruß,
  Marcel

Bezug
                
Bezug
Injektivität beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:50 So 28.06.2015
Autor: pc_doctor

Ok, vielen Dank für eure Antworten. Ich dachte, ich mache da etwas falsch. Diskrete Mathematik ist lange her bei mir.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]