matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenInjektivität Surjektivität Abb
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Abbildungen" - Injektivität Surjektivität Abb
Injektivität Surjektivität Abb < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektivität Surjektivität Abb: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:16 Mi 22.07.2020
Autor: ichgast

Aufgabe
Sei [mm] M_{n,m}der [/mm] Raum aller n x m Matrizen.Sei [mm] f:M_{2,2} \rightarrow M_{2,3} [/mm] gegeben durch:
[mm] f(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) [/mm] = [mm] \begin{pmatrix} a & b+c & d \\ b & a+d & a\end{pmatrix} [/mm]
a)bestimme sie eine Basis von Bild(f)
b)untersuche ob f injektiv ist
c)untersuche ob f surjektiv ist


Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
[https://www.mathelounge.de/669694/bestimme-basis-von-bild-f-sei-f-m22-m23]

Habe die ersten beiden Aufgaben versucht , weiss aber nicht ob Sie richtig sind.Bei der dritten weiss ich keinen Ansatz.

a)Ich habe die Einheitsvektoren in f benutzt:
[mm] f(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}) [/mm] = [mm] \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1\end{pmatrix} [/mm]
Dann habe ich die treppenstufenform der rechten seite gebildet:
[mm] \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix} [/mm]
Und dann abgelesen das die Basis von bild von f = [mm] \begin{pmatrix} 1\\0 \end{pmatrix} \begin{pmatrix} 0\\1 \end{pmatrix} [/mm] ist. Ist das korrekt?

b)Habe hier folgendes versucht:
[mm] \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1\end{pmatrix} [/mm] * [mm] \begin{pmatrix} x\\y\\z \end{pmatrix} [/mm] = [mm] \begin{pmatrix} 0\\0\\0 \end{pmatrix} [/mm]
Hab dort rausbekommen:
Kern(f) = [mm] \begin{pmatrix} -1\\-1/2\\1 \end{pmatrix} [/mm]
also Kern(f) ist ungleich {0} daraus folgt f ist nicht injektiv.

c)weiss ich nicht wie ich anfangen soll



        
Bezug
Injektivität Surjektivität Abb: Antwort
Status: (Antwort) fertig Status 
Datum: 15:52 Mi 22.07.2020
Autor: fred97


> Sei [mm]M_{n,m}der[/mm] Raum aller n x m Matrizen.Sei [mm]f:M_{2,2} \rightarrow M_{2,3}[/mm]
> gegeben durch:
>  [mm]f(\begin{pmatrix} a & b \\ c & d \end{pmatrix})[/mm] =
> [mm]\begin{pmatrix} a & b+c & d \\ b & a+d & a\end{pmatrix}[/mm]
>  
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>  
> [https://www.mathelounge.de/669694/bestimme-basis-von-bild-f-sei-f-m22-m23]
>  
> a)Ich habe die Einheitsvektoren in f benutzt:
>  [mm]f(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix})[/mm] =
> [mm]\begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1\end{pmatrix}[/mm]
>  Dann
> habe ich die treppenstufenform der rechten seite gebildet:
>  [mm]\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}[/mm]
>  Und
> dann abgelesen das die Basis von bild von f =
> [mm]\begin{pmatrix} 1\\0 \end{pmatrix} \begin{pmatrix} 0\\1 \end{pmatrix}[/mm]
> ist. Ist das korrekt?

Nein. Das kann ja nicht sein, denn das Bild  von  f  enthält doch 2x 3 -Matrizen.

>  
> b)Habe hier folgendes versucht:
>  [mm]\begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1\end{pmatrix}[/mm] *
> [mm]\begin{pmatrix} x\\y\\z \end{pmatrix}[/mm] = [mm]\begin{pmatrix} 0\\0\\0 \end{pmatrix}[/mm]
>  
> Hab dort rausbekommen:
>  Kern(f) = [mm]\begin{pmatrix} -1\\-1/2\\1 \end{pmatrix}[/mm]

Wieder falsch.  der  Kern von f enthält  2x2- Matrizen.  Welche  2x2 -Matrizen werden auf  die Nullmatrix im Raum der 2x3 -Matrizen abgebildet ?


> also Kern(f) ist ungleich {0} daraus folgt f ist nicht
> injektiv.

>

Doch,  f ist  injektiv.


> c)weiss ich nicht wie ich anfangen soll

Tja,  wie die Aufgabe c) lautet hast du verschwiegen.

>  
>  


Bezug
        
Bezug
Injektivität Surjektivität Abb: Antwort
Status: (Antwort) fertig Status 
Datum: 08:30 Do 23.07.2020
Autor: fred97


> Sei [mm]M_{n,m}der[/mm] Raum aller n x m Matrizen.Sei [mm]f:M_{2,2} \rightarrow M_{2,3}[/mm]
> gegeben durch:
>  [mm]f(\begin{pmatrix} a & b \\ c & d \end{pmatrix})[/mm] =
> [mm]\begin{pmatrix} a & b+c & d \\ b & a+d & a\end{pmatrix}[/mm]
>  
> a)bestimme sie eine Basis von Bild(f)
>  b)untersuche ob f injektiv ist
>  c)untersuche ob f surjektiv ist
>  
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>  
> [https://www.mathelounge.de/669694/bestimme-basis-von-bild-f-sei-f-m22-m23]
>  
> Habe die ersten beiden Aufgaben versucht , weiss aber nicht
> ob Sie richtig sind.Bei der dritten weiss ich keinen
> Ansatz.
>
> a)Ich habe die Einheitsvektoren in f benutzt:
>  [mm]f(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix})[/mm] =
> [mm]\begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1\end{pmatrix}[/mm]
>  Dann
> habe ich die treppenstufenform der rechten seite gebildet:
>  [mm]\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}[/mm]
>  Und
> dann abgelesen das die Basis von bild von f =
> [mm]\begin{pmatrix} 1\\0 \end{pmatrix} \begin{pmatrix} 0\\1 \end{pmatrix}[/mm]
> ist. Ist das korrekt?
>  
> b)Habe hier folgendes versucht:
>  [mm]\begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1\end{pmatrix}[/mm] *
> [mm]\begin{pmatrix} x\\y\\z \end{pmatrix}[/mm] = [mm]\begin{pmatrix} 0\\0\\0 \end{pmatrix}[/mm]
>  
> Hab dort rausbekommen:
>  Kern(f) = [mm]\begin{pmatrix} -1\\-1/2\\1 \end{pmatrix}[/mm]
> also Kern(f) ist ungleich {0} daraus folgt f ist nicht
> injektiv.
>  
> c)weiss ich nicht wie ich anfangen soll
>  
>  

Jetzt ist die Aufgabenstellung vollständig. Meine gestrige Antwort war wohl etwas kurz.

Ich würde mit b) beginnen: wir bestimmen Kern(f):

Zeige:

$ [mm] f(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) [/mm] = [mm] \begin{pmatrix} a & b+c & d \\ b & a+d & a\end{pmatrix}= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & a\end{pmatrix} \gdw [/mm] a=b=c=d=0.$

Damit haben wir: [mm] $kern(f)=\{\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}\}.$ [/mm]

Wir folgern: f ist injektiv.

Zu a) und c): Nach dem Dimensionssatz ist

$4= [mm] \dim M_{2,2}= \dim kern(f)+\dim [/mm] bild(f)= [mm] \dim [/mm] bild(f).$ Damit ist [mm] $\dim [/mm] bild(f) [mm] \ne [/mm] 6= [mm] \dim M_{2,3}.$ [/mm]

f ist also nicht surjektiv.

Das Folgende mache nun selbst: wähle eine Basis [mm] $\{B_1,B_2,B_3,B_4 \}$ [/mm] von [mm] M_{2,2}. [/mm] Suche Dir eine aus, aber möglichst einfach.

Da f injektiv ist sind [mm] $f(B_1),...,f(B_4)$ [/mm] l.u. in [mm] M_{2,3}. [/mm] Damit hast Du eine Basis von bild(f).




Bezug
                
Bezug
Injektivität Surjektivität Abb: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:53 Do 23.07.2020
Autor: ichgast

Falls ich nicht wüsste das f Injektiv ist. Gibt es noch eine weitere Möglichkeit Surjektivität auszurechnen?

Bezug
                        
Bezug
Injektivität Surjektivität Abb: Antwort
Status: (Antwort) fertig Status 
Datum: 15:05 Do 23.07.2020
Autor: fred97


> Falls ich nicht wüsste das f Injektiv ist. Gibt es noch
> eine weitere Möglichkeit Surjektivität auszurechnen?

Diese Antwort hier

https://matheraum.de/read?i=1098053

zeigt Dir, dass  $ [mm] \dim [/mm] bild(f) <6= [mm] \dim M_{2,3}$ [/mm] ist.

Damit ist f nicht surjektiv.


Bezug
                                
Bezug
Injektivität Surjektivität Abb: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:15 Do 23.07.2020
Autor: ichgast

Du hast mir sehr geholfen. Danke dir.

Bezug
        
Bezug
Injektivität Surjektivität Abb: Tipp zu a)
Status: (Antwort) fertig Status 
Datum: 11:01 Do 23.07.2020
Autor: HJKweseleit

a)bestimme sie eine Basis von Bild(f)

[mm]f(\begin{pmatrix} a & b \\ c & d \end{pmatrix})[/mm] =[mm]\begin{pmatrix} a & b+c & d \\ b & a+d & a\end{pmatrix}[/mm]=[mm]a*\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}[/mm] + [mm]b*\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0\end{pmatrix}[/mm] + [mm]c*\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0\end{pmatrix}[/mm] + [mm]d*\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0\end{pmatrix}[/mm]

Da hat man schon die 4 Matrizen einer Basis, wobei man nur noch zeigen muss, dass diese lin. unabh. sind. Das ist aber sehr einfach.

Bezug
                
Bezug
Injektivität Surjektivität Abb: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:04 Do 23.07.2020
Autor: fred97


> a)bestimme sie eine Basis von Bild(f)
>  
> [mm]f(\begin{pmatrix} a & b \\ c & d \end{pmatrix})[/mm]
> =[mm]\begin{pmatrix} a & b+c & d \\ b & a+d & a\end{pmatrix}[/mm]=[mm]a*\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}[/mm]
> + [mm]b*\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0\end{pmatrix}[/mm] +
> [mm]c*\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0\end{pmatrix}[/mm] +
> [mm]d*\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0\end{pmatrix}[/mm]
>  
> Da hat man schon die 4 Matrizen einer Basis, wobei man nur
> noch zeigen muss, dass diese lin. unabh. sind. Das ist aber
> sehr einfach.

Die lineare Unabhängigkeit dieser 4 Matrizen fogt sofort aus

    $ [mm] kern(f)=\{\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}\}. [/mm] $



Bezug
                
Bezug
Injektivität Surjektivität Abb: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:49 Do 23.07.2020
Autor: ichgast

$ [mm] a\cdot{}\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix} [/mm] $
fehlt in der unteren rechten ecke nicht eine 1 ?

Bezug
                        
Bezug
Injektivität Surjektivität Abb: Antwort
Status: (Antwort) fertig Status 
Datum: 15:02 Do 23.07.2020
Autor: fred97


> [mm]a\cdot{}\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0\end{pmatrix}[/mm]
>  
> fehlt in der unteren rechten ecke nicht eine 1 ?

Ja, Du hast recht.


Bezug
                
Bezug
Injektivität Surjektivität Abb: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:16 Do 23.07.2020
Autor: ichgast

Vielen dank HJKweseleit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]