matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbbildungen und MatrizenInjektivität, Surjektivität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Abbildungen und Matrizen" - Injektivität, Surjektivität
Injektivität, Surjektivität < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektivität, Surjektivität: Untersuchen und beweisen
Status: (Frage) beantwortet Status 
Datum: 12:49 Di 06.11.2012
Autor: Neongelb

Aufgabe
Untersuche folgende Abbildungen auf Injektivität und Surjektivität.

1. f: [mm] \mathcal{P}(M) \to \mathcal{P}(M), [/mm] f(A)=A \ [mm] \{x\}, [/mm] wobei M eine Menge und [mm] x\in [/mm] M ein festes Element von M sei.

2. f: [mm] \{0,1\}^{6} \to \{0,1,2,3,4,5,6\}, [/mm] f(a) = Anzahl der Nullen in a

Anderen Abbildungen konnte ich die richtigen Eigenschaften zuordnen (hoffe ich :P) aber bei diesen beiden fehlt mir wirklich jeglicher Ansatz, weil ich die Bedeutung nicht genau verstehe.


zu 1. : Die Potenzmenge von M wird auf die Potenzmenge von M abgebildet. f(A) = A\ {x} müsste dann doch direkt heißen,  dass die Funktion nicht surjektiv sein kann, weil {x} Teilmenge von P(M) ist, aber nicht getroffen werden kann. Wie ich auf Injektivität untersuchen soll weiss ich leider überhaupt nich.


zu 2. : Hier macht mir die 6te Potenz Probleme. Kann ich Mengen irgendwie potenzieren und dann einfach die Menge anschauen um so die Eigenschaften zu bestimmen?

Ich hoffe ihr könnt mir da irgendwie weiterhelfen. Danke schonmal im Voraus.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Injektivität, Surjektivität: Falsches Forum
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:58 Di 06.11.2012
Autor: Neongelb

Habe ich meine Frage jetzt ins falsche Forum gepackt? Wenn ja tuts mir leid, ist mein erster Thread.

Bezug
        
Bezug
Injektivität, Surjektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 13:14 Di 06.11.2012
Autor: fred97


> Untersuche folgende Abbildungen auf Injektivität und
> Surjektivität.
>  1. f: [mm]\mathcal{P}(M) \to \mathcal{P}(M),[/mm] f(A)=A \ [mm]\{x\},[/mm]
> wobei M eine Menge und [mm]x\in[/mm] M ein festes Element von M
> sei.
>  
> 2. f: [mm]\{0,1\}^{6} \to \{0,1,2,3,4,5,6\},[/mm] f(a) = Anzahl der
> Nullen in a
>  
> Anderen Abbildungen konnte ich die richtigen Eigenschaften
> zuordnen (hoffe ich :P) aber bei diesen beiden fehlt mir
> wirklich jeglicher Ansatz, weil ich die Bedeutung nicht
> genau verstehe.
>  
>
> zu 1. : Die Potenzmenge von M wird auf die Potenzmenge von
> M abgebildet.

Besser .....   "in die Potenzmenge" ...

>  f(A) = A\ {x} müsste dann doch direkt
> heißen,  dass die Funktion nicht surjektiv sein kann, weil
> {x} Teilmenge von P(M) ist, aber nicht getroffen werden
> kann.

Ja, setze B={ x }. Dann gibt es keine Teilmenge A von M mit f(A)=B.



> Wie ich auf Injektivität untersuchen soll weiss ich
> leider überhaupt nich.

Zeige [mm] f(\emptyset)=f(\{ x \}). [/mm] Kann f injektiv sein ?

>  
>
> zu 2. : Hier macht mir die 6te Potenz Probleme. Kann ich
> Mengen irgendwie potenzieren und dann einfach die Menge
> anschauen um so die Eigenschaften zu bestimmen?

Ist N eine Menge und n [mm] \in \IN, [/mm] so ist [mm] N^m [/mm] definiert als das n-fache kartesische Produkt von N.

http://de.wikipedia.org/wiki/Kartesisches_Produkt

FRED

>  
> Ich hoffe ihr könnt mir da irgendwie weiterhelfen. Danke
> schonmal im Voraus.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Injektivität, Surjektivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:59 Di 06.11.2012
Autor: Neongelb

Wow, vielen dank. das heißt also bei Abbildung 2 dass sie sowohl injektiv ist, weil es maximal 6 Nullen geben kann: {0,0,0,0,0,0}, also auch surjektiv, weil jeder Funktionswert mindestens ein Urbild hat?

Was ich noch nicht verstanden habe, ist wieso du $ [mm] f(\emptyset)=f(\{ x \}). [/mm] $ gesetzt hast. Kannst Du das vielleicht noch etwas erläutern?

Bezug
                        
Bezug
Injektivität, Surjektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 14:07 Di 06.11.2012
Autor: fred97


> Wow, vielen dank. das heißt also bei Abbildung 2 dass sie
> sowohl injektiv ist, weil es maximal 6 Nullen geben kann:
> {0,0,0,0,0,0},

Injektiv ist die Abbildung nicht, denn f((1,0,0,0,0,0))=5=f((0,0,0,0,0,1))

>  also auch surjektiv, weil jeder
> Funktionswert mindestens ein Urbild hat?

Natürlich hat jeder Funktionswert ein Urbild. Du hast "surjektiv" nicht verstanden.

Du mußt zeigen: zu jedem j [mm] \in \{0,1,2,3,4,5,6,\} [/mm] ex. ein [mm] a_j \in \{0,1\}^6 [/mm] mit [mm] f(a_j)=j [/mm]

>  
> Was ich noch nicht verstanden habe, ist wieso du
> [mm]f(\emptyset)=f(\{ x \}).[/mm] gesetzt hast.

Das habe ich nicht gesetzt ! Es gilt !  Damit sieht man , dass f nicht injektiv ist.

FRED

> Kannst Du das
> vielleicht noch etwas erläutern?


Bezug
                                
Bezug
Injektivität, Surjektivität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Di 06.11.2012
Autor: Neongelb

Alles klar, vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]