matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenInjektivität
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Abbildungen" - Injektivität
Injektivität < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:56 So 22.04.2012
Autor: xxela89xx

Aufgabe
fi : R → R  Welche dieser Funktionen sind injektiv, welche sind surjektiv?
f1(x) = 3x + 1
f2(x) = x + 2 sin(x)
f3(x) = 2x + sin(x)
f4(x) = x + sin(x)
f5(x) = [mm] x^3 [/mm] + 3x
f6(x) = [mm] x^3 [/mm] − 3x
f7(x) = [mm] x^4 [/mm] − [mm] 3x^2 [/mm] + 3x + 1

Hey,

ich muss diese Aufgabe bearbeiten und habe keine Ahnung wie ich das machen soll. Wäre echt super, wenn mir jemand weiterhelfen kann. Eine Abb. ist injektiv, wenn die Urbilder gleich sind und surjektiv, wenn jedes Element aus der Zielmenge getroffen wird. Ich weiß jedoch nicht, wie ich das auf diese Aufgabe anwenden soll.

LG

        
Bezug
Injektivität: Korrektur
Status: (Antwort) fertig Status 
Datum: 21:09 So 22.04.2012
Autor: MaxPlanck

Injektivität bedeutet nicht Gleichheit der Urbilder, sondern, dass Gleichheit der Bilder genau dann besteht, wenn die Urbilder gleich sind, d.h.
[mm] \[f(x)=f(y)\gdw x=y\] [/mm]
Um Injektivität zu zeigen, machst du genau das. Wenn bei zwei verschiedenen Werten das gleiche rauß kommt, dann ist die Abbildung nicht injektiv (vgl. [mm] $x^{2}$). [/mm]
Surjektivität bedeutet, dass es zu jedem Bild ein Urbild gibt, d.h.
[mm] \[f(x)=y \forall y\] [/mm]
Man betrachtet also die Funktion und schaut, ob tatsächlich alle Werte getroffen werden.

BSP. [mm] \[f(x)=3x+1\] [/mm]

Aus [mm] \[3x+1=3y+1\] [/mm] folgt schon [mm] \[x=y\], [/mm] also ist die Funktion injektiv.
Betrachtet man [mm] \[3x+1=y\], [/mm] so gibt es tatsächlich zu jedem $y$ ein $x$, also besteht auch Surjektivität.

Um diese Eigenschaften zu zeigen, muss man sie für alle $x$ und $y$ zeigen, um sie zu widerlegen genügt ein eiziges Beispiel.

  

Bezug
                
Bezug
Injektivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:26 So 22.04.2012
Autor: xxela89xx

Danke dir, aber irgendwie kann ich das auf die nächsten Bsple nicht übertragen.
Wäre dann f2 auch inj und surj?
x+2sin(x) ist doch ungleich y+2sin(y) bei verschiedenen Werten und für x+2sin(x)=y gibt es ein bestimmtes y oder? Habe ich das richtig verstanden?

Bezug
                        
Bezug
Injektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 07:16 Mo 23.04.2012
Autor: angela.h.b.


> Danke dir, aber irgendwie kann ich das auf die nächsten
> Bsple nicht übertragen.
>  Wäre dann f2 auch inj und surj?

Hallo,

irgendwie wär's ganz nett für die Antwortenden, wenn Du nochmal schreiben würdest, was [mm] f_2 [/mm] ist, damit man nicht klicken muß.

Es geht also um [mm] f_2(x):=x+2\sin(x), [/mm] betrachtet als Funktion aus dem [mm] \IR [/mm] in den [mm] \IR. [/mm]

> x+2sin(x) ist doch ungleich y+2sin(y) bei verschiedenen
> Werten

Plotte Dir die Funktion mal, und entscheide zunächst nach Augenschein, ob sie injektiv ist. Gibt es Stellen, die denselben Funktionswert haben?

Und surjektiv? Wird jede reelle Zahl als Funktionswert angenommen?

Mir ist nicht klar, ob die Aufgabe so gedacht ist, daß Ihr die Erkenntnisse aus dem Graphen nehmen sollt, oder ob Ihr wirklich rechnen sollt.
Stehen schon Kenntnisse aus der Analysis zur Verfügung? Ableiten etc. könnt und dürft ihr?

> und für x+2sin(x)=y gibt es ein bestimmtes y oder?

Nun, daß es "ein bestimmtes y" gibt, steht hier nicht zur Debatte, sonst wäre [mm] f_2 [/mm] nämlich keine Funktion. Die Frage bei der Surjektivität ais eine andere: gibt es zu jedem [mm] y\in \IR [/mm] ein passendens x, so daß [mm] f_2(x)=y. [/mm]

LG Angela

> Habe ich das richtig verstanden?


Bezug
                                
Bezug
Injektivität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:34 Do 26.04.2012
Autor: xxela89xx

Danke, ich versuche es zu lösen.

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]