matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Injektivität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Analysis des R1" - Injektivität
Injektivität < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:21 Do 07.06.2007
Autor: Kuebi

Hallo ihr!

Normalerweise würde ich diese Frage nicht stellen, aber irgendwie steh ich gerade auf dem Schlauch und bräuchte kurz nen Denkanstoß!

Ich war mir immer sicher, dass die Funktion f(x)=ln(x) injektiv ist und habe das heute morgen auch bei ner Nachhilfe so weitergegeben. Jetzt habe ich aber schon Stimmen gehört, die sagen, die is nicht injektiv! Normal habe ich keine Probleme mit den Definitionen, aber wie gesagt steh ich grade aufm Schlauch.

Injektiv heißt doch

f heißt injektiv, wenn für alle y aus Y höchstens (also evtl. auch keines) ein x aus X mit f(x) = y existiert

oder äquivalent formuliert

f heißt injektiv, wenn für alle x1, x2 aus X gilt: Wenn f(x1) = f(x2), dann x1 = x2.

Klar, ln(x) hat im Bereich der negativen reellen Zahlen keine Funktionswerte, aber das ist ja auch gar nicht erforderlich gemäß diesen Definitonen oder überlese ich gerade irgendeine Feinheit!?

Wäre denkbar für schnelle Denkhilfe! Habe nämlich gerade Selbstzweifel wie ich je die Zwischenprüfung in Mathe gepackt hab! ;-)

Viele Grüße
Kübi
[huepf]

        
Bezug
Injektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 17:35 Do 07.06.2007
Autor: angela.h.b.

Hallo,

dort, wo sie definiert ist, ist sie injektiv.

Über die Stellen, an denen sie nicht definiert ist, brauchen wir nicht nachzudenken.

Gruß v. Angela

Bezug
        
Bezug
Injektivität: kleine Hilfe
Status: (Antwort) fertig Status 
Datum: 17:42 Do 07.06.2007
Autor: Helfemich

injektiv bedeutet auch, dass eine parallele zur X-Achse den Graph höchstens einmal schneidet, was hier der fall ist...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]