Injektive Abbildung l.u. Menge < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 01:00 Do 13.05.2010 | Autor: | Fu2y |
Guten Abend!
Ich sitze hier gerade an einem Beweis und habe leichte Verständnisprobleme 8.).
Satz: Bei einer injektiven Abbildung [mm] \phi [/mm] zwischen zwei Vektorräumen, gehen linear unabhängige Vektoren [mm] v_1, [/mm] ..., [mm] v_k \in [/mm] V in linear unabhängige Vektoren [mm] \phi(v_1), [/mm] ... [mm] \phi(v_k) \in [/mm] W über.
Beweis: Angenommen [mm] \phi(v_1), [/mm] ..., [mm] \phi(v_k) [/mm] seinen linear abhängig. Dann gibt es eine nichttriviale Darstellung [mm] \sum_{i=1}^{k} a_i\phi(v_i) [/mm] = 0 des Nullvektors in W, woraus dann [mm] \phi(\sum_{i=1}^{k} a_i(v_i)) [/mm] = [mm] \phi(0) [/mm] folgt. Wegen der Injektivität von [mm] \phi [/mm] ergibt sich daraus [mm] \sum_{i=1}^{k} a_i v_1= [/mm] 0, also eine nichttriviale Darstellung des Nullvektors in V. Das ist ein Widerspruch da die [mm] v_i [/mm] linear unabhängig sind.
Jetzt zu meiner Frage. Ich verstehe nicht ganz warum die [mm] v_i [/mm] in V linear unabhängig sein müssen. Ich habe jetzt von einer linear abhängigen Menge aus W auf eine linear abhängige Menge in V gefolgert. Aber wo liegt jetzt hier genau der Widerspruch ?
Stehe vielleicht etwas auf dem Schlauch 8.)
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 01:02 Do 13.05.2010 | Autor: | Fu2y |
Entschuldigung der Post ist leider im falschen Unterforum 8.)
|
|
|
|
|
Moin,
> Guten Abend!
> Ich sitze hier gerade an einem Beweis und habe leichte
> Verständnisprobleme 8.).
>
> Satz: Bei einer injektiven Abbildung [mm]\phi[/mm] zwischen zwei
> Vektorräumen, gehen linear unabhängige Vektoren [mm]v_1,[/mm] ...,
> [mm]v_k \in[/mm] V in linear unabhängige Vektoren [mm]\phi(v_1),[/mm] ...
> [mm]\phi(v_k) \in[/mm] W über.
>
> Beweis: Angenommen [mm]\phi(v_1),[/mm] ..., [mm]\phi(v_k)[/mm] seinen linear
> abhängig. Dann gibt es eine nichttriviale Darstellung
> [mm]\sum_{i=1}^{k} a_i\phi(v_i)[/mm] = 0 des Nullvektors in W,
> woraus dann [mm]\phi(\sum_{i=1}^{k} a_i(v_i))[/mm] = [mm]\phi(0)[/mm] folgt.
> Wegen der Injektivität von [mm]\phi[/mm] ergibt sich daraus
> [mm]\sum_{i=1}^{k} a_i v_1=[/mm] 0, also eine nichttriviale
> Darstellung des Nullvektors in V. Das ist ein Widerspruch
> da die [mm]v_i[/mm] linear unabhängig sind.
>
> Jetzt zu meiner Frage. Ich verstehe nicht ganz warum die
> [mm]v_i[/mm] in V linear unabhängig sein müssen.
Das wird vorausgesetzt. Das hätte man im Beweis vielleicht nochmal erwähnen können.
> Ich habe jetzt
> von einer linear abhängigen Menge aus W auf eine linear
> abhängige Menge in V gefolgert. Aber wo liegt jetzt hier
> genau der Widerspruch ?
Was meinst du?
$\ [mm] v_1,..v_k [/mm] $ sind lin. unabhängig. Es wird die Annahme, die $\ [mm] \phi(v_1),...,\phi(v_k) [/mm] $ könnten unter dieser Voraussetzung lin. abhängig sein zum Widerspruch geführt.
>
> Stehe vielleicht etwas auf dem Schlauch 8.)
Grüße
ChopSuey
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 01:19 Do 13.05.2010 | Autor: | Fu2y |
Hui das ging ja schnell 8.)
Aber so ganz habe ich es leider noch nicht verstanden. Im Prinzip habe ich jetzt ja gezeigt, dass ich aus "linear abhängigen Bildern", "linear abhängige Urbilder" bekomme. Was heißt das jetzt für eine linearunabhängige Menge, welche ich abbilden möchte ? ( Ich finde den Widerspruch nicht 8.))
Gruß Fu2y
|
|
|
|
|
Hallo,
> Hui das ging ja schnell 8.)
> Aber so ganz habe ich es leider noch nicht verstanden. Im
> Prinzip habe ich jetzt ja gezeigt, dass ich aus "linear
> abhängigen Bildern", "linear abhängige Urbilder" bekomme.
> Was heißt das jetzt für eine linearunabhängige Menge,
> welche ich abbilden möchte ? ( Ich finde den Widerspruch
> nicht 8.))
Die Annahme, $\ [mm] \phi(v_1), [/mm] ..., [mm] \phi(v_k) [/mm] $ könnten lin abhängig sein, wenn $\ [mm] v_1,...,v_k [/mm] $ linear unabhängig sind, wurde zum Widerspruch geführt.
Damit wurde dein Satz von wegen $\ [mm] v_1, [/mm] ... , [mm] v_k [/mm] $ lin. unabhängig $\ [mm] \Rightarrow \phi(v_1), [/mm] ..., [mm] \phi(v_k) [/mm] $ lin. unabhängig bewiesen.
>
> Gruß Fu2y
Grüße
ChopSuey
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 01:36 Do 13.05.2010 | Autor: | Fu2y |
OK, vielen Dank für deine schnelle Hilfe, jetzt habe ich es verstanden 8.).
|
|
|
|