matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Injektiv und surjektiv
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis des R1" - Injektiv und surjektiv
Injektiv und surjektiv < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektiv und surjektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:34 Sa 30.10.2010
Autor: melisa1

Aufgabe
In diesen folgenden Fällen entscheiden Sie, ob f injektiv, surjektiv ist. Begründen Sie Ihre Antwort.
(a) Sei f : [mm] R^2 [/mm] -> [mm] R^2, [/mm] sodass f (x, y) = (x + y, x − y).
(b) Sei f : N->N, sodass f (x) = x2.


Hallo,

bei der a) versteh ich gar nicht was das für eine Funktion ist. Was hat das mit dem komma auf sich? Kann mir das vlt jemand anhand eines anderen Beispiels zeigen.

zur b)

Injektiv ist sie auf jeden fall, da keine zwei natürlichen Zahlen die gleiche Quadratzahl haben können. Aber ob sie surjektiv ist oder nicht bin ich mir nicht ganz so sicher. Ich dachte es ist auch surjektiv, da ja der Werte- und Definitionsbereich gleich mächtig sind, d.h. beide N.


stimmt das?


danke im voraus


Lg Melisa

        
Bezug
Injektiv und surjektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 Sa 30.10.2010
Autor: Sax

Hi,

mit dem Komma hat es folgende Bewandtnis :

[mm] \IR^2 [/mm]  (Kurzschreibweise für  [mm] \IR\times\IR) [/mm] ist die Menge aller Zahlenpaare, wobei die einzelnen Einträge jeweils aus [mm] \IR [/mm] sind.
Diese Zahlenpaare werden in der Form (a,b), bei manchen Autoren auch (a|b) oder (a;b) geschrieben.

Für die Gleichheit der Zahlenpaare gilt dabei
(a,b) = (c,d) [mm] \gdw [/mm] a=c [mm] \wedge [/mm] b=d

Die Funktion bei a.) bildet nun Zahlenpaare auf Zahlenpaare ab, z.B. ist
f(8,3 , 2) = (8,3+2 , 8,3-2) = (10,3 , 6,3)

Zwei Bemerkungen zur Schreibweise :
1. bei Verwendung des Kommas zwischen den Koordinaten auf saubere Schrift achten, weil sonst keiner mehr weiß, welches Zahlenpaar mit (8,3,2) gemeint ist.
2. f(8,3 , 2)  müsste eigentlich  f((8,3 , 2)) heißen.

zu b.) :
Teil 1 ist richtig, bei Teil 2 musst du dir die Definition von "surjektiv" noch mal ansehen. Da steht nichts von Mächrigkeit drin.

Gruß Sax.

Bezug
                
Bezug
Injektiv und surjektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:02 Sa 30.10.2010
Autor: melisa1

Hallo Sax,

danke für deine ausführliche Erklärung!

Was das mit dem Komma auf sich hat, habe ich jetzt verstanden, ich weiß aber trotzdem nicht wie ich das bei solchen Funktionen zeigen soll. Kannst du mir das vlt anhand eines anderen Beispiels zeigen?

zur b) Es kann nicht surjektiv sein, weil zum Beispiel 2 keine Quadratzahl ist, also nicht im Bild der Funktion liegt. Stimmt das?


Lg Melisa

Bezug
                        
Bezug
Injektiv und surjektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 21:23 Sa 30.10.2010
Autor: Sax

Hi,

b.) ist jetzt richtig.

Zu a.) musst du dir Folgendes überlegen :

Injektivität :  Können zwei verschiedene Zahlenpaare dasselbe Bild haben ?
Wenn es so ein Beispiel gibt, dann ist f nicht injektiv; wenn du beweisen kannst, dass es solche Zahlenpaare nicht geben kann, dann hast du gezeigt, dass f injektiv ist.
Zwei Beispiele, die nicht funktionieren :
f(8 , 3)  =  (11 , 5)  und  f(5 , 6)  =  (11 , -1) Bilder sind verschieden, weil die zweiten Komponenten nicht gleich sind
f(12 , 7)  =  (19 , 5)  und  f(9 , 4)  =  (13 , 5)  Bilder sind verschieden, weil die ersten Komponenten nicht gleich sind

Surjektivität :  Kann man zu jedem vorgegebenen Zahlenpaar (u , v)  ein Zahlenpaar  (x , y)  finden, so dass  f(x , y)  =  (u , v)  ist ?  Wenn du das allgemein zeigen kannst, dann hast du bewiesen, dass f surjektiv ist.

Gruß Sax.


Bezug
                                
Bezug
Injektiv und surjektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:55 Sa 30.10.2010
Autor: melisa1

Hallo,

ich denke es ist injektiv, denn solch ein Zahlenpaar kann es nicht geben (hab schon so einiges Versucht). Als beweis reichen die einzelnen Beispiele natürlich nicht. Muss ich das jetzt mit der Definition von Injektivität zeigen?



Gruß Melisa

Bezug
                                        
Bezug
Injektiv und surjektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 Sa 30.10.2010
Autor: MaRaQ

Hier stand Unsinn, tut mir leid.
Bezug
                                                
Bezug
Injektiv und surjektiv: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:18 Sa 30.10.2010
Autor: Al-Chwarizmi


> > Hallo,
>  >  
> > ich denke es ist injektiv, denn solch ein Zahlenpaar kann
> > es nicht geben (hab schon so einiges Versucht). Als beweis
> > reichen die einzelnen Beispiele natürlich nicht. Muss ich
> > das jetzt mit der Definition von Injektivität zeigen?
>  >  
> > Gruß Melisa
>

> Hallo Melisa,
>
> ja, das ist korrekt. Einzelbeispiele taugen niemals als
> Beweis, nur als Gegenbeispiel.
>
> Nur ist die Frage, ob es sich hierfür lohnt, sich um einen
> Beweis zu emühen. Schau lieber noch mal, ob du nicht doch
> ein Gegenbeispiel findest. ;-)
>  
> Kann es zwei reelle Zahlen x, y geben, so dass x + y = x -
> y? Wenn ja, wie müssen die aussehen?
>
> Das ist die Frage, die du dir hier stellen musst.      [haee]   [kopfschuettel]


Hallo MaRaQ,

ich frage mich sehr, ob diese Frage hier wirklich weiter
führt .....

LG     Al-Chw.




Bezug
                                                        
Bezug
Injektiv und surjektiv: Sorry
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:24 Sa 30.10.2010
Autor: MaRaQ

Du hast natürlich recht. Da hatte ich einen groben Denkfehler drin. Sorry.
Bezug
                                                
Bezug
Injektiv und surjektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:33 Sa 30.10.2010
Autor: melisa1

Hallo,


ich bin jetzt einwenig durcheinander gekommen.

Sax hat doch gezeigt wie es nicht geht:

f(8 , 3)  =  (11 , 5)  und  f(5 , 6)  =  (11 , -1)

daraus hatte ich verstanden das ich zwei verschiedene x's und zwei verschiedene y's finden soll, so dass das Paar von beiden gleich wird.

Du sagst jetzt ich soll ein x und y finden damit x+y=x-y ist.

Welches muss nun gezeigt werden, damit die Funktion injektiv ist?
Oder ist es das gleiche und ich versteh das einfach nicht?

Lg Melisa

Bezug
                                                        
Bezug
Injektiv und surjektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 22:40 Sa 30.10.2010
Autor: MaRaQ


> Hallo,
>  
>
> ich bin jetzt einwenig durcheinander gekommen.
>  
> Sax hat doch gezeigt wie es nicht geht:
>  
> f(8 , 3)  =  (11 , 5)  und  f(5 , 6)  =  (11 , -1)
>
> daraus hatte ich verstanden das ich zwei verschiedene x's
> und zwei verschiedene y's finden soll, so dass das Paar von
> beiden gleich wird.
>  
> Du sagst jetzt ich soll ein x und y finden damit x+y=x-y
> ist.
>  
> Welches muss nun gezeigt werden, damit die Funktion
> injektiv ist?
>  Oder ist es das gleiche und ich versteh das einfach
> nicht?
>  
> Lg Melisa

Entschuldige, meine Schuld, mein Fehler. Ich war einfach nur völlig daneben, ich weiß nicht wie das passiert ist.

Bitte einfach nicht beachten. ;-)

(a) Sei f : $ [mm] R^2 [/mm] $ -> $ [mm] R^2, [/mm] $ sodass f (x, y) = (x + y, x − y).

Du musst rausfinden, ob es Zahlenpaare (x,y) und (x',y') geben kann, so dass:

(x+y, x-y ) = (x'+y', x'-y')

Wobei x=x' oder y=y' gelten kann, aber nicht x=x' und y=y'.

Was ich oben schrieb, ich werde es gleich rausnehmen, war einfach nur Unsinn. Wohl zu spät für mich.

Tut mir leid, ich wollte dich nicht verwirren.

Tipp für den Beweis: Versuch zu folgern:


(x+y, x-y ) = (x'+y', x'-y') => x = x' und y = y'

Bezug
                                                                
Bezug
Injektiv und surjektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:47 Sa 30.10.2010
Autor: melisa1

Hallo,


kein Problem, kann passieren :-)


  

> Tipp für den Beweis: Versuch zu folgern:
>
>
> (x+y, x-y ) = (x'+y', x'-y') => x = x' und y = y'

Lag ich also mit meiner Vermutung, die Funktion ist injektiv, richtig?


Lg Melisa

Bezug
                                                                        
Bezug
Injektiv und surjektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 00:22 So 31.10.2010
Autor: MaRaQ


> Hallo,
>  
>
> kein Problem, kann passieren :-)
>  
>
>
> > Tipp für den Beweis: Versuch zu folgern:
> >
> >
> > (x+y, x-y ) = (x'+y', x'-y') => x = x' und y = y'
>
> Lag ich also mit meiner Vermutung, die Funktion ist
> injektiv, richtig?
>  
>
> Lg Melisa

Ja, lagst du. ;-)

Den Term kannst du in zwei Gleichungen umformen, dann bist du mit dem Beweis schon fast fertig:

I:   x + y = x' + y'
II:  x - y = x' - y'

lg Maraq


Bezug
                                                                                
Bezug
Injektiv und surjektiv: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:03 So 31.10.2010
Autor: melisa1

Ok super! Danke nochmal an alle!

Ich denke, den Rest krieg ich hin :-)

Bezug
                
Bezug
Injektiv und surjektiv: Kommas und Kommas .....
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:13 Sa 30.10.2010
Autor: Al-Chwarizmi


> Zwei Bemerkungen zur Schreibweise :
>  1. bei Verwendung des Kommas zwischen den Koordinaten auf
> saubere Schrift achten, weil sonst keiner mehr weiß,
> welches Zahlenpaar mit (8,3,2) gemeint ist.
>  2. f(8,3 , 2)  müsste eigentlich  f((8,3 , 2)) heißen.


Hallo Sax (und alle anderen),

falls man zur Darstellung von Dezimalzahlen Kommas verwendet,
ist es natürlich eine sehr schlechte Idee, das Komma auch noch
für die Trennung der Elemente in Paaren, Tripeln etc. zu verwenden.

Ich verwende aus diesem Grund (und anderen) seit Jahrzehnten
keine Dezimalkommas mehr, sondern Dezimalpunkte. Wer sich
vom Dezimalkomma nicht trennen kann, sollte Paare halt z.B.
als (x;y) oder (x | y) schreiben.


LG      Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]