matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenInhomogenes Gleichungssystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Inhomogenes Gleichungssystem
Inhomogenes Gleichungssystem < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inhomogenes Gleichungssystem: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:26 So 14.12.2008
Autor: sharth

Aufgabe
Untersuchen Sie, für welche Werte von [mm] \lambda [/mm] das inhomogene Gleichungssystem lösbar ist, eine eindeutige Lösung hat, keine Lösung besitzt!

[mm] 2x+(\lambda+1)*y- 2z=\lambda^2 [/mm] -3
6x + 3y + [mm] (\lambda-2)*z=2\lambda [/mm] - 5
[mm] \lambda*x [/mm] + z = 1

Hallo zusammen,

hier mal wieder eine neue Aufgabe.
Nach Lösung mit Hilfe das Gauß'schen Eliminationsverfahrens steht bei mir
in der letzten Zeile nun: [mm] \lambda^2-\lambda-2 [/mm] = [mm] -\lambda^2+15\lambda-2. [/mm]

Mir kommt es dabei nicht darauf an ob das jetzt richtig oder falsch ist sondern wie ich generell verfahre, um nun herauszufinden, ob das Gl.-system lösbar, eine eindeutige Lösung hat oder keine Lösung.

Wie muss ich mit der letzten Zeile nun weiter machen?

Viele Grüße,

sharth

        
Bezug
Inhomogenes Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 21:44 So 14.12.2008
Autor: leduart

Hallo
eigentlich muss doch da stehen z=.....
wieso hast du ne Gleichung nur für [mm] \lambda? [/mm]
da muss doch sowas stehen wie a*z=b und dann ist das z. Bsp für a=b=0 immer richtig, also unendlich viele Lösungen, oder a=0 [mm] b\ne0 [/mm] keine Lösung, oder [mm] a\ne [/mm] 0  z=b/a genau eine Lösung.
Gruss leduart

Bezug
                
Bezug
Inhomogenes Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:51 So 14.12.2008
Autor: sharth

Hallo,

> eigentlich muss doch da stehen z=.....

Ja, sorry, mein Fehler. Also so sollte es aussehen:

[mm] (\lambda^2-\lambda-2)*z [/mm] = [mm] -\lambda^2+15\lambda-2 [/mm]

Das ist nur die letzte Zeile die ich durch das Gauß-Verfahren ermittelt habe. Aber es geht ja jetzt nur um die Werte von Lambda und nicht um x, y, z. Deswegen verstehe ich die Aufgabe auch nicht so wirklich.

Wäre nett wenn nochmal jemand was dazu sagen könnte,

Gruß, sharth


Bezug
                        
Bezug
Inhomogenes Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 22:03 So 14.12.2008
Autor: angela.h.b.


> Hallo,
>  
> > eigentlich muss doch da stehen z=.....
>  
> Ja, sorry, mein Fehler. Also so sollte es aussehen:
>  
> [mm](\lambda^2-\lambda-2)*z[/mm] = [mm]-\lambda^2+15\lambda-2[/mm]
>  
> Das ist nur die letzte Zeile die ich durch das
> Gauß-Verfahren ermittelt habe. Aber es geht ja jetzt nur um
> die Werte von Lambda und nicht um x, y, z. Deswegen
> verstehe ich die Aufgabe auch nicht so wirklich.
>  
> Wäre nett wenn nochmal jemand was dazu sagen könnte,


Hallo,

Deiner  Zeile kannst Du diese Information entnehmen:

sofern [mm] \lambda^2-\lambda-2\not=0, [/mm] also [mm] \lambda\not=2 [/mm] und [mm] \lambda\not=-1, [/mm] so kannst Du durch [mm] \lambda^2-\lambda-2 [/mm] dividieren und hast [mm] z=\bruch{-\lambda^2+15\lambda-2}{\lambda^2-\lambda-2}. [/mm]

Wie es weitergeht, kommt dann auf die anderen Zeilen an, ich rechne das nicht nach. Dir scheint es ja auch nur um diese letzte Zeile zu gehen.

Danach untersuchst Du die beiden ausgeschlossenen Fälle.

Du hast beide Male  0=irgendeine andere Zahl,

und diese Gleichung ist durch kein x,y,z der Welt zu lösen. Also hat das System für diese Fälle keine Lösung.

Gruß v. Angela


Bezug
                                
Bezug
Inhomogenes Gleichungssystem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:28 So 14.12.2008
Autor: sharth

Hallo Angela,

danke für deine schnelle Antwort

> Wie es weitergeht, kommt dann auf die anderen Zeilen an,
> ich rechne das nicht nach. Dir scheint es ja auch nur um
> diese letzte Zeile zu gehen.

Genau! Aber jetzt weiß ich wie ich vorgehen muss. Die Lambdas haben mich doch etwas verwirrt. Danke nochmal!

Einen schönen Abend!

Gruß,

sharth


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]