matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenInhomogener Lösungsansatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Inhomogener Lösungsansatz
Inhomogener Lösungsansatz < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inhomogener Lösungsansatz: Lösen eine DGL
Status: (Frage) beantwortet Status 
Datum: 12:18 So 24.10.2010
Autor: Mitschy

Aufgabe
Analytische Lösung von:
[mm] T*\bruch{dx(t)}{dt}+x(t)=K*u(t) [/mm]

x(0)=0

1)homogener Ansatz
2)inhomogener Ansatz

Hallo Gemeinde,

die Erste Aufgabe (homogener Ansatz) ist kein Problem.

1)
[mm] T*\bruch{dx(t)}{dt}+x(t)=0 [/mm]
Lösung:
[mm] x_{h}=x=C_{1}*e^{-\bruch{t}{T}} [/mm]

Bei dem inhomogener Ansatz mach ich es mir irgendwie schwer, da u(t) eine allgemeine Formel ist.

2) [mm] x=x_{h}+x_{p} [/mm]

[mm] x_{p}=K*u(t) [/mm]

Lösungsansatz:
Ab hier bin ich mir schon nicht sicher, da ich eigentlich den Lösungsansatz einer linearen Störfunktion nutze.

[mm] x_{p}=a*u(t)+b [/mm]

[mm] x_{p}^{'}=a*\bruch{u(t)}{dt} [/mm]

eingesetzt:

[mm] T*a*\bruch{u(t)}{dt}+a*u(t)+b=K*u(t) [/mm]

Jetzt sollte der Koeffizientenvergleich folgen aber ab hier geht mein Weg eigentlich ins Nichts.

Ich hoffe es kann mir jemand einen entscheidenden Tipp geben.

Danke im voraus.

Gruß Michael  

        
Bezug
Inhomogener Lösungsansatz: Lösung des Taschenrechners
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:26 So 24.10.2010
Autor: Mitschy

Wenn ich die gesamte Formel mit dem Taschenrechner lösen lasse kommt folgende Lösung raus:

[mm] x=\bruch{K*e^{-t/T}*\integral_{}^{}{(e^{t/T}*u(t)) dt}}{T}+C_{1}*e^{-t/T} [/mm]


Also ist [mm] x_{p}=\bruch{K*e^{-t/T}*\integral_{}^{}{(e^{t/T}*u(t)) dt}}{T} [/mm]

Aber wie kommt man ohne den TR auf diese Lösung?

Bezug
        
Bezug
Inhomogener Lösungsansatz: Variation der Konstanten
Status: (Antwort) fertig Status 
Datum: 12:41 So 24.10.2010
Autor: moudi

Hallo Michael

Hier kommt man mit der "Variation der Konstanten" ans Ziel.
Die homogene Lösung ist ja von der Form [mm] $c\cdot e^{-t/T}$. [/mm] Deshalb variiert man fuer die inhomogene Loesung die Konstante [mm] $c\to [/mm] c(t)$. Das in die DG eingesetzt ergibt dann eine neue DG fuer die Funktion $c(t)$, die "relativ einfach" zu loesen ist.

mfG Moudi

Bezug
                
Bezug
Inhomogener Lösungsansatz: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:12 So 24.10.2010
Autor: Mitschy

Daran hab ich gar nicht gedacht! Hab es jetzt schnell durchprobiert und komme genau auf die Lösung des Taschenrechners.

Danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]