matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieInhalt Elem.-geo. Figuren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Maßtheorie" - Inhalt Elem.-geo. Figuren
Inhalt Elem.-geo. Figuren < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inhalt Elem.-geo. Figuren: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 03:52 Fr 28.04.2017
Autor: Joseph95

Aufgabe
Sei A [mm] \in \IR^d [/mm] eine elementargeometrische Figur mit A = [mm] \bigcup_{j=1}^{m} Q_{j} [/mm] = [mm] \bigcup_{i=1}^{n} P_{i} [/mm] mit jeweils paarweisen disjunkten achsenparallelen Quadern [mm] Q_{1}, [/mm] ..., [mm] Q_{m} [/mm] bzw. [mm] P_{1}, [/mm] ..., [mm] P_{n}. [/mm] Zeigen Sie, dass für den Inhalt [mm] \mu [/mm] gilt:
[mm] \sum^m_{j=1} \mu(Q_j) [/mm] = [mm] \sum^n_{i=1} \mu(P_j) [/mm]

Hinweis: Es soll nur die Additivität von [mm] \mu [/mm] auf Menge der achsenparallelen Quader ausgenutzt werden.

Hey Leute,

ich bräuchte mal wieder eure Hilfe. Ich bin mir unsicher bei der Aufgabe, sie kommt mir sehr simpel rüber und befürchte dass ich sie falsch verstehen könnte.
Ich bin wie folgt vorgegangen:
Ich will zunächst den Inhalt von A bestimmen, dafür nutze ich aber nur die Vereinigung der Mengen [mm] Q_1, [/mm] ..., [mm] Q_m. [/mm] Sprich: [mm] \mu(A) [/mm] = [mm] \mu(\bigcup_{j=1}^{m} Q_{j}) [/mm] = [mm] \mu(Q_1 \cup Q_2 \cup [/mm] ... [mm] \cup Q_n) [/mm] = [mm] \mu(Q_1) [/mm] + [mm] \mu(Q_2) [/mm] + ... + [mm] \mu(Q_n) [/mm] = [mm] \sum^m_{j=1} \mu(Q_j) [/mm]

Analog zeige ich es für [mm] \mu(A) [/mm] mit den Vereinigungen von [mm] \mu(\bigcup_{i=1}^{n} P_{i}). [/mm]

Dann folgt ja aus den beiden Gleichungen auch meine Behauptung. Wäre ich nicht dann so fertig?


Viele Grüße
Joseph95

        
Bezug
Inhalt Elem.-geo. Figuren: Antwort
Status: (Antwort) fertig Status 
Datum: 10:05 Fr 28.04.2017
Autor: Gonozal_IX

Hiho,

ja du wärst fertig.

Gruß,
Gono

Bezug
        
Bezug
Inhalt Elem.-geo. Figuren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:10 Fr 28.04.2017
Autor: tobit09

Hallo zusammen!


Ich vermute, dass für diese Aufgabe nur ein Inhalt [mm] $\mu$ [/mm] auf der Menge der achsenparallelen Quader zur Verfügung steht, nicht jedoch ein Inhalt auf der Menge der elementargeometrischen Figuren.

Wenn ich richtig liege, macht es also (noch) keinen Sinn, [mm] $\mu(A)$ [/mm] zu bilden.

Vielmehr soll wohl mit dieser Aufgabe die Wohldefiniertheit einer durch [mm] $\mu(A):=\sum_{i=1}^m\mu(Q_j)$ [/mm] definierten Mengenfunktion auf der Menge der elementargeometrischen Figuren nachgewiesen werden.

Für meine Interpretation spricht der Hinweis, man solle "nur die Additivität von $ [mm] \mu [/mm] $ auf der Menge der achsenparallelen Quader" (also nicht etwa auf der Menge der elementargeometrischen Figuren!) ausnutzen.


Vielleicht kannst du, Joseph95, hier Klarheit bringen.

Außerdem beantworte bitte folgende Fragen:

Ist [mm] $\mu$ [/mm] ein beliebiger Inhalt auf der Menge der achsenparallelen Quader oder ein spezieller?
Wie sind bei euch die achsenparallelen Quader genau definiert? (Mithilfe offener, abgeschlossener oder "halbseitig offener" Intervalle?)


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]